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Abstract 

A study of the mathematics involved in the modelling of 
volcanic eruptions is presented with a view to a future 
analysis of historical volcanic eruption data from the 
Bismarck Volcanic Arc to the north of PNG. The Poisson 
distribution is considered initially but strict criteria of IID 
and a 
present context. The more realistic Weibull model is then 
considered which allows  to vary as a function of time 
thereby allowing greater flexibility for modelling a wider 
range of volcanic types where eruption rates might not be 
constant over time. Finally, a demonstration is provided of 
the use of a Weibull plot method to graphically determine 
the parameters  and  of the Weibull model for a given 
set of eruption data. 

Keywords: Probability, distribution, models, deterministic, 
probabilistic, Poisson, Weibull, likelihood, MLE. 
 
Introduction 

Risk assessment and mitigation strategies of volcanic hazards are 
an ongoing need in PNG to avoid major economic loss, 
environmental damage and widespread mortality. Reliable 
assessment should lead to more accurate forecasting using 
deterministic or probabilistic modelling (Marzocchi & 
Bebbington, 2012, Varley et al. 2006).  
 
The former involves accurate measuring of seismic events, such 
as ground-level elevation from GPS measurements and gas 
pressures in magma chambers. The assumption is that if enough 
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data can be gathered to completely specify a deterministic model, 
the laws of physics can be applied, eruption events can be forecast 
for any future time (Varley, 2006) and evacuations planned. 
However, eruptive mechanisms of volcanoes are not sufficiently 
well understood to allow deterministic forecasting to be made 
with confidence (Jones et al., 1999). 
 
Probabilistic modelling, which will be the focus of this paper and 
which can be used concurrently with deterministic modelling, 
recognizes the existence of random causative factors which can be 
estimated from historical eruption records provided these are 
complete, accurate and extensive (Damaschke et al., 2018). By 
analyzing historical data, hidden patterns can be discovered by a 
process pioneered by Wickman (1966a &b, cited in Marzocchi & 
Bebbington, 2012) using statistical modelling.  
 
This paper will examine several statistical models which could be 
used to model volcanic eruptions using historical data and make 
probability estimates to date possible future eruptions. 
Mathematics for modelling of volcanic eruptions with the Poisson 
distribution of discrete random events will be considered initially. 
This will be shown to have limited application in the present 
context because of the strict requirements of Independent 
Identically Distributed (IID) data and a fixed rate of occurrence of 

ontinuous exponential 
distribution models inter-event times under the same assumptions. 
From here, it will also be noted that the exponential distribution is 
a special case of the Weibull distribution.  This latter distribution 
incorporates a time variable 
a function of time. Thus, the Weibull model will be shown to 
allow greater flexibility for modelling a wider range of volcanic 
types. Finally, a demonstration will be provided of the use of a 
Weibull plot to graphica
the Weibull model. 
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Statistical Models 

A statistical model enables probabilistic forecasting using one of 
several well-known continuous or discrete probability 
distributions provided certain fixed points or parameters can be 
estimated from historical records of eruptions.  
 
Probability Distributions depend on data from IID events. Certain 
fixed points called parameters need to be determined to allow 
predictions to be made with estimated probabilities. Here we 
consider the method of Maximum Likelihood Estimation (MLE) 
used to determine necessary distribution parameters. 
 
Maximum Likelihood Estimate  

Here we write: P(X | p) as the probability of obtaining a given 
vector of data, X, under a particular distribution. However, we 
first need an estimate of parameter p which can be written in 
terms of a likelihood function: L (p | X) which is the value of p 
which will make a set of historical data vector X most likely. 
Thus, we seek the value of p which maximises the likelihood L 
thereby estimating the parameter from the data (Law, 2013, p 
330). 
 
Given an observed set of discrete data, x1, x2,..,xn, for example 
(continuous distributions can be treated analogously), and an 
unknown parameter , the Likelihood function becomes the joint 
probability function: 
 

(x1). P  (x2  (xn)     (1) 
 

where P  is the probability mass function for this distribution.  
 
Differentiating (1) to maximise can be simplified by taking 
natural logs of both sides of (1) to obtain a sum of terms which 
can be more readily differentiated.  Thus, we differentiate: 
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(x1)) + ln(P  (x2  (xn)), (2) 
 
set the derivative to 0 and solve for , as MLE estimate. 
will have the same maximum position as since the log 
function is strictly increasing with as  increases. 
 
Volcanic eruption models 

The important parameter for volcanic eruptions is , the rate of 
eruptions over time which is used in the Poisson distribution of 
random events, and related distributions. This rate may be a 
constant over time (  ) as required for a Poisson Distribution or it 
may be a function of time (  Timing can be based on 
absolute time of event occurrence (onset of eruption) or it can be 
inter-event, or repose times as will be further discussed. 
 
Homogeneous Poisson Process 

 
Figure 1: A series of Poisson curves with emphasis on small values of 

, the number of time 

(dark blue line) when the situation reverses. The maximum turning 
point on each distribution moves slowly to the right. 
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We consider initially Homogeneous Poisson events where  is 
constant over time with discrete probability mass function (Law, 
2013, P312): 

                           (3) 
 

which gives the probability of x events (here eruptions, Figure 1), 
assumed a small number in the given time frame (say 1 year), 
where the parameter  is estimated from sampled data using the 
MLE method as explained above and as demonstrated below 
(Jones et al., 1999, P35). 
 

For data samples  of an assumed Poisson 

distribution, we consider the joint probability mass function (1) as 
the likelihood function:  

. 

We maximize the corresponding natural logarithm function as  

 

which has derivative 
 
 

=
 0, for a turning point 

 the sample mean 

 .     (4) 

It can be further shown that the second derivative is negative 
implying that the turning point is a maximum. Thus, the constant 
Poisson parameter  for homogeneous Poisson events can be 
estimated from the mean number of events occurring in a given 
time interval. This parameter can also be understood as 
characterizing the intensity of eruptions. 
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It can be noted that Eqn. (4) does not carry any information 
regarding the distribution of xi , whereas this information is 
available and could potentially carry important information for 
model selection, checking the adequacy of model selection and 
parameter estimation (Jones et al., 1999, P35). To use this extra 
available information, the parameter  for equation (5) can be 
estimated by maximizing the likelihood (joint probability) 
function:  

 

where ti is the time between events (see worked example, Jones et 
al P.36). These inter-event or reposal times are also used to model 
non-homogeneous Poisson events for which mean rates of events 
are defined with:   

 a function of time. 

As previously noted, a Poisson distribution of occurrences of 
eruptions implies an exponential distribution for inter-arrival or 
repose times t between eruptions (Ho, 91, Law, 2013, p313 ) as 
given by:  

                (5) 

 
where -event times. Thus, we 
can also write: 

f(t) -                 (6) 
 

which is a special case of the Weibull distribution: 

f(t) = )/(1 tet                                (7) 

 
when 
Weibull distribution as the coefficient of the exponential term: 
        -1        (8) 

where the variable t can model change in the rate of eruption with 
time as will be discussed in the next section where the non-
homogeneous Poisson distributions are introduced.  
 

)... t, t; (  21 ntL

),(t  

tetf )(
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Non-homogeneous Poisson events 

Here we consider the Weibull density function defined as 

f(t) =  

a scale parameter and  shape parameter. The 
introduction of the time variable t, typically a time to fail, but here 
time to an eruption, enables modelling where eruption rates vary 
with t t) as will be demonstrated and as commonly 
observed.  

 

Figure 2: Weibull density function (f(t) = ) is presented 

= 1 and three distinguishing values of For f(t) = 1/et 
we have the special case of the exponential distribution which models 
inter-

 (here 0.5) and event rates 
initially increase from zero to a maximum and then decrease as shown. 

 
The Weibull function can be considered for 3 distinguishing 
values of the shape parameter each with (Figure 2). For 
1 and so f(t) = 1/et we have the special case of the exponential 
distribution which models inter-event times for a Poisson 
distribution where 

now 

 1 (here 0.5) and f(t)= 

tet 1

tet 1

3
3
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t
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5.05.0
5.0

tet
, f(t) is now initially increasing from zero to a maximum 

and then decreasing as shown with the eventual overriding of the 
effect of the factor t0.5. 
 
Modelling  

Two approaches for modelling  have been used in the 

literature. The first (Ho, 1991) uses the Weibull Cumulative 
Distribution Function (CDF), (Law, 2013, p290) to model  

with  and t where ti belongs to a set of repeated observations 

of time from the first occurrence. Thus for , we require

.  

 
For use with the Weibull distribution, we have already derived (8)  

 

                        

from which we can now derive: 

                        tt)(                                                    (9) 

as the predicted numbers of events in time t by introducing the 
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Figure 3:  

Thus, the Weibull distribution enables the modelling of varying rates. 
 
If o is constant with time giving an 
exponential distribution for inter-event times which would also 

general Weibull model with inter-
1 gives a Weibull distribution 

for inter-

should be possible to predict future events in the historical series. 
 
MLE Indicators of parameters 

p170) to be given by:  

                  

 and .               (11) 

 
Relation to Poisson Distribution 
It can be noted here that this will simplify to the Homogeneous 
Poisson Distribution if  when  
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Modelling inter-event times 

A second approach (Bebbington & Lai, 1996) considers a renewal 
process and uses a Weibull Distribution (again with parameters  
and ) to model inter-occurrence or reposal times which are 
presumed to be independent and identically distributed. This 
distribution is given by:  

                                                           (12) 

to model time to eruption or repose time (i.e. failure time or 1  
time to at least one event).  
Here, however, we will consider:  

                                             (13) 

to model survival time (R(t)) or time when no event occurs (i.e. 1 
 failure time). A Weibull plot, explained as follows, can be used 

to estimate  and  graphically. We write: 

 and so .        (14) 

This equation can be linearized by taking natural logarithms of 
both sides again and giving: 

  .     (15) 

A Weibull plot involves regressing  against ln. The 

slope of the regression line will estimate  and the y intercept,

 using the estimated  .  
 
Weibull Plot demonstrated 

Weibull Analysis is typically used as a method of modelling 
failure data to measure long term performance of manufactured 
devices, but in the present context to measure time to eruption of 
a potential volcanic source. The data that can be measured is 
typically a time to failure, but for a Weibull plot, the time must be 
converted into a measure of unreliability which here will be 1  
MR 

t
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Approximation 
(http://reliawiki.org/index.php/Parameter_Estimation): 
 

                         MR = (i -0.3)/(N + 0.4)                     (16) 
 
where i is the absolute rank order of failure and N is the total 
number of events (failures). The MR is a measure of the 
proportion (cumulative %) of failures (See Table 1), for each time 
of failure.  The measure of unreliability required for plotting is 
then given by: 

R(t) = 1  MR                           (17) 
 
and this will be plotted against time (Figure 4) to determine the 
parameters  and  in (15). 
 

Table 1: Portion of observed and calculated data for the Karkar 
Island volcano for a Weibull plot showing the use of formulas as 
described in the text for Weibull plot (16) and for the regression 
(15). Median Rank is a proportional rank order used as a measure 
of unreliability. Data Source:RVO. 
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Table 2: Portion of observed and calculated data produced 
by the formulas shown in Table 1 for a Weibull plot as 
described in the text. 

 
 

 
Figure 4: Weibull plot using sample data from the Karkar Island 
(Tables 1 and 2) volcano for purposes of illustration. The trend line 
models the linear relation (15) with the slope being used to determine 

 
 
Summary & Conclusion 

Mathematics for modelling of volcanic eruptions was presented 
starting with the Poisson distribution of random events. This has a 
limited application on the present context because of the strict 

 noted 
that an equivalent continuous exponential distribution models 
inter-event times under the same assumptions. However, it was 
also noted that the exponential distribution is a special case of the 
Weibull distribution. This distribution incorporates a time 
variable t 
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the Weibull model, by incorporating the variable t allows greater 
flexibility for modelling a wider range of volcanic types. Finally, 
a demonstration was provided of the use of a Weibull plot to 
graphically determine the parameters  and  of the Weibull 
model. 
 
Glossary 

CDF Cumulative Distribution Function (F(x)) 
PDF Probability Density Function (f(x)) for continuous  

distributions. Probability mass function is equivalent to a 
PDF for discrete distributions. 

  
  
 Poisson Distribution parameter measuring event rate  

assumed constant over time 
IID  Independent Identically Distributed 
MLE  Maximum Likelihood Estimate 
MR  Median Rank  
RVO Rabaul Volcanic Observatory 
Poisson distribution: Discrete probability distribution used here to  

predict numbers of events in a given interval of time when 
random events are occurring at a constant rate, given by 

 
Exponential distribution: Continuous probability distribution  

-event 
times when events follow a Poisson distribution. This is a 

= 1. 
Weibull distribution: Continuous distribution used here to model  

volcanic activity (time to failure of a potential volcanic 

parameter). This can be understood as a generalisation of 
the exponen

 
Parameter notation  
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Suppose ln(L(p)) is maximal for p=p , but it does not maximize 
L(p). Then, there exists p p  such that L(p~)>L(p ). Because the 
logarithm is increasing, this also means that ln(L(p~))>ln(L(p )). 
This is a contradiction with ln(L(p )) being maximal. 

 

http://reliawiki.org/index.php/Parameter_Estimation 
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