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Abstract 

The exponential function becomes more useful for modelling 

size and population growth when a braking term to account 

for density dependence and harvesting is added to form the 

logistic equation. Using these functions, models are 

developed to explain population growth, equilibrium and 

local species extinction for particular application in fisheries.  
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Introduction  

This paper was developed in the context of the need for growth models 

in general but for sustainable fisheries in particular.  To this end, the 

necessary mathematics needs to be developed and here the role of 

exponential function ex is pivotal. This is a unique function because the 

derivative of the function is the same as the function or alternately we 

can state that the function is invariant under differentiation. Having this 

property makes it both unique among the known functions and also one 

of the most important functions in pure and applied mathematics.  

 

This paper will derive the invariant property and illustrate its use in 

modelling, growth and decay of physical and biological situations. At the 

first level, an application of a linear first order Ordinary Differential 

Equation (ODE) will be made to model population growth, equilibrium, 

harvesting and extinction. We first define the exponential function and 

note its special properties. 

 

Exponential Function 

 

An exponential function has the form f(x) = bx, where x is the exponent 

and b, a constant. A very useful form is obtained when b is replaced by 

e 2.71828…, a transcendental number (an infinite series of non-
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repeating decimals). The function ex is unique because the derivative of 

the function is the same as the function (Misra et al. 2017). We consider 

f (x) to be a function such that: 

 

   df (x) / dx = f (x),    (1) 

 

which can be also presented (treating the derivative as a differential and 

cross multiplying) as: 

   1/f(x) df(x) = dx. 

 

Integrating both sides with respect to their respective variables, we have: 

 

      ln f (x) = x,     (2) 

 

which can be written equivalently as:  

 

    f (x) = ex.    (3) 

 

Allowing for an arbitrary constant, c, in the right hand side of (3) after 

integration, we obtain a general solution function:  

 

f (x) = e x + c = ex. ec,  or b.ex, 

 

where b = ec is a constant. This result (3) can also be obtained by 

considering ex as defined by the power series expansion: 
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thereby confirming (3). Thus, we can conclude that the function ex 

remains invariant under differentiation which, as previously noted, 

makes it one of the most important functions in pure and applied 

mathematics. This invariance property: 

, 

whereby the rate of growth of the function equals the value of the 

function models many biological, mechanical and other systems. We can 

also note, more generally, that if f(x) = c ekx where c and k are arbitrary 

constants: 

 

 (the chain rule) = k c ekx = k f (x). (4) 

 

Here c is an arbitrary constant making f(x) = c ekx a general solution to 

the ODE (1): d f /dx = f. 

 

Other ways of expressing this property include: slope of the graph or the 

rate of increase of the function at x is the value of the function at x; the 

function y = ex solves the differential equation yy ' or ; and 

variables such as growth or decay rates are proportional to size.  

 

Since this property can be interpreted as the rate of growth at any point 

(e.g. in time) of the function being equal to the value of the function at 

that point, it can be used in first order linear differential equations (Zill, 

2013, p84) to model many biological and other systems where individual 

or population growth (or decay) rate depends on the present state (e.g. 

size) of the system. To demonstrate the widespread usefulness of this 

exponential function, we now explore its application to population 

growth. 

 

 

Exponential equations for population growth. 

 

Here we introduce the use of the exponential function by considering a 

biological population that grows at a rate of 0.2, say, of its size with 

growth function given by: 
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which, from (4) and (2), will have the solution: 

 

y= c e 0.2t where k (in (4)) = 0.2. 

 

Now note that if y = ax rather than ex, 

then    or     

giving    or    (5) 

and 

,     (6)  

using the chain rule. 

 

We now consider a population starting with a single individual (y0 = 1) 

which doubles in size every 3 years and so is represented by: 

y = 2 t/3 y0 and so ,   (7) 

 

where t is the number of years of growth. This population growth 

function can be written in the form: 

from (5), 

From which we derive  = 0.231 e 0.231t.  (8)  

 

This can also be shown to be equivalent to: 
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From (4) above, we can note that . 

 

We can now consider an initial value problem with ODE growth function 

yy 3' , with an initial value of y(0) = 5.7. This can be written in the 

form: 

dy/dx = 3y. 

 

From (4) above we have: 

 

   y = ce3x, as a general solution  

and since y(0) = 5.7, ce0 giving c = 5.7, we conclude y = 5.7 e 3x, as the 

particular solution for initial conditions. We now proceed to apply these 

models to population growth. 
 

Standard models for Population Growth 

 

We consider a population of single celled organisms such as bacteria 

(Vandemeer, 2010) in an environment with unlimited food supply, and 

where individual cells divide once a day. We replace the continuous 

variable y with the discrete variable N to model population size in terms 

of numbers. Thus, from an initial population of N0 and a population Nt 

after t days, the population size will be (from (7)): 

 

Nt = 2t N0. 

 

More generally, we can replace 2 by R and write: 

 

Nt = Rt   N0    (9) 

 

where R is the rate of population increase (Figure 1).   

 

It turns out to be very convenient in formulating models to express R as 

er, where r is referred to as the intrinsic rate of natural increase and so 

we have a population growth function: 

 

Nt = N0 e
rt,     (10) 

 

which is known as the Malthusian growth model (Roberts, 2010, p 131)  

typical of populations growing with unlimited resources. 

3
2lnk
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Figure 1. General form of exponential 

growth of a population in (8) (Vandemeer, 

2010). 

 

Consider starting from a single individual and so N0 = 1. We have: 

 

    Nt = ert,  

 

and so    ln Nt = rt.    (11)  

 

The natural logarithm of the population number is equal to the intrinsic 

rate of increase, r, by time. Many micro-organisms closely follow this 

exponential pattern of growth which can also be written as: 

 

r
d

d


   t

Nln     t  ,   (12)  

 

showing that the growth rate of the log of the population number is the 

intrinsic rate of increase. This can then be rewritten (now omitting the 

subscript t for simplicity) more intuitively as: 

 

r
  dt
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We can note also that r and R are related as: 
reR   and so ln (R)r  . 

. 

We now proceed to show that the exponential equation, as a model of 

population dynamics, requires modification to account for the empirical 

fact that intrinsic rates of population increase, r, tend to decrease while 

(and even because) a population size is increasing, thus leading to the 

Logistic Equation.  

 

Logistic Equation 

 

Population growth rate 

Empirically, the intrinsic growth rate, r, tends to decrease as N increases 

as a result of what is known as density dependence in the behavior of 

populations. There is found to be a general relation between intrinsic rate 

of increase and population density, which can be approximated by a 

straight line (Figure 2). 
 

 Thus, we can now express r in the form: r = f(N) and modify (10) as 

.  

 

Given the straight line empirical result that r decreases as population 

density increases, we can represent f(N) as a – bN where a is the r axis 

intercept and b the rate of decrease of r giving: 

    (14)

 

 

which is an expression of the logistic equation (Roberts, 2010. P 133). 

NNf
dt

dN
)(
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Figure 2. Empirical evidence, from a 

laboaratory population of paramecium, that 

intrinisic rate of population increase descreases  

as population density increases (Vandemeer, 

2010). 

Figure 3. The logistic pattern showing 

an initial exponential growth pattern for 

the laboaratory population of 

paprmecium (Figure 1) followed by a 

decreasing growth rate caused by 

environmental limitations (Vandemeer, 

2010). 

 

 We note that, when growth rate is zero, this becomes a quadratic 

equation when   giving: 

    aN – bN2 = 0, 

 

or   N(a – bN) = 0,     (15) 

 

and so when N = 0 or N= a/b. These results and empirical evidence 

(Figure 3) already suggest a sigmoid growth function with a minimum, 

maximum and point of inflection (Figures 4, 5, & 6). 

 

 

 

 

0
dt

dN
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Figure 4. Quadratic growth 

rate function, dN/dt, as a 

function of total biomass of 

a population. 

Figure 5. Sigmoid Growth 

function (c.f. Figure 3) as a 

function of time. The point of 

inflection is shown as the 

maximum in Figure 4. 

Figure 6. Growth rate 

function, dN/dt, as a 

function of time again 

showing a maximum 

(c.f. the point of 

inflection in Figure 

5). 

 

An alternative form of the logistic equation for population growth can be 

obtained by assuming that the growth rate is proportional to the relative 

amount of living space available to the population and introduce the term 

carrying capacity with  symbol K. Thus, intrinsic growth rate r can 

be modified as:  

     

to account for the linear decrease in r, proportional to the increase in N. 

The result is a logistic equation for population growth: 

 

    (16) 

 

which also has the form 2bNaN  . Thus, we can now give a and b 

intuitive biological meaning with a = r and b = r/K, the latter known as 

the braking term.  
 

Fish growth model  

The von Bertalanffy fish growth model (1951) is also based on the 

logistic equation and is given by: 

 

    (17) 

where is fish length at time t, is asymptotic length or the mean 

length that individuals in a given stock would reach if they were to grow 
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indefinitely, k is the growth rate parameter, the rate at which  is 

approached, and is the age of the fish at zero length if it had always 

grown according to the equation.  

 

The model assumes a length celling or theoretical maximum length 

similar to a population ceiling which is determined by density 

dependence. Instead of density dependence, here we have physiologic 

constraints on growth size determined by genetic structure. The model 

also assumes fish grow to a theoretical maximum length (or weight) and 

the closer the length gets to this maximum the slower will be the rate of 

change of length, an assumption which gives good fits to empirical data 

(Figure 7). 
 

 

 

 

 

Figure 6. Straight line empirical 

growth rate data calculated from 

enpirical data presented in Figure 7 

and suggesting, that intrinisic rate of 

population increase, descreases  as 

population density increases. 

Figure 7. Evidence of the logistic 

pattern. Initial growth pattern for fish 

because data are available only for fish 

large enough to be caught. Shown is the 

decreasing growth rate caused by genetic 

constraints (Cubillos, 2017). 

 

To make equation (17) more intuitively obvious we can relate it to 

equation (9) of the exponential model as follows: 

 

From (17)    
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which is the remaining fraction of total growth available as t increases. 

  

 
 

  

 

where , remaining fraction of growth, replaces population N(t) 

and -K replaces r in (12) (c.f. r)Nln  (
 td

 d
 t ). Again, we can note from 

(12) that: 
  

 

 

 

 

  

 

 

where a and b are constants and the rate of increase of Lt with time is 

assumed to be a linear function of Lt, a relation which can be empirically 

verified (Figure 6). Again, we have the form of the logistic equation. 
 

Having considered these examples (population and size growth rate 

functions) we now proceed to formalize the logistic equation. 

 

Logistic Models of Population Growth 

 

The logistic or Verhulst (Roberts, 2010, p133) equation has already been 

derived as (Equation (16)): 

   

which can be interpreted as the change of rate of population N = birth 

rate – death rate, and where r is intrinsic rate of increase, K is carrying 
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capacity, and N (or N(t)) is the number of individuals at time t. This is a 

differential equation of the form:  

'y or dy/dt = ay – by2    (18) 

 

where b is the “braking” term r/K, and a is the growth term r.  

 

We note that Equation (13) can also be expressed in terms of biomass 

instead of population size: 

     (19) 

where B(t) is population biomass and where maximum biomass B∞ is 

constrained again by carrying capacity, K. 

 

The logistic equation (16) can be shown (Kreyszig, 2011, p32) to have 

the solution: 

    (20) 

which reduces to the exponential function  for b=0 (unlimited 

carrying capacity). Thus (16) will have the solution:  

.

  (21) 

` 

Here we have self-limiting population growth (Figure 8) determined by 

carrying capacity K of the supporting environment. The logistic growth 

function solution for various values of c as shown in the legend. Growth 

term (a or r) is set at 8, breaking term (b or r/K) at 2 and so equilibrium 

position at 4 (a/b or K). For N0 < K, c > 0 and population grows initially 

exponentially before the braking term becomes dominant and 

equilibrium (carrying capacity) is reached. For N0 > K, c < 0 and 

population is not sustainable, braking term is dominant and population is 

reduced to carrying capacity, K. 
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Figure 8. The logistic growth function solution for various values of c as shown in 

the legend. Growth term (a or r) is set at 8, breaking term (b or r/K) at 2 and so 

equilibrium position at 4 (a/b or K). For N0 < K, c > 0 and population grows initially 

exponentially before the braking term becomes dominant and equilibrium (carrying 

capacity) is reached. For N0 > K, c < 0 and population is not sustainable, braking 

term is dominant and population is reduced to carrying capacity, K.  

  
Logistic Update Function 

The logistic function can also be expressed as an update or difference 

function: 

      (22) 

by approximation using  to replace  and where Nt 

represents population number at time t.  

 

Logistic Function with harvesting 

Here we modify equation (20) as: 

 

'y  = ay – by2 – Hy  

 

= (a - H) y – by2    (23) 

 

where Hy is an equilibrium or sustainable harvest and H, (where H < a 

to avoid extinction and allow renewable harvesting), is harvesting rate 

(catch size over a given period of time) as it effectively reduces growth 
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rate. The corresponding ODE solution, as a modification of (20), 

becomes: 

   Ha

b





H)t-(a-ce

1
  y

 .   (24)

 

The equilibrium position (figure 9) now changes from a/b to (a – H)/b 

 

 
Figure 9. The logistic growth function solution with harvesting using the values of 

a, b and c in figure 8, a harvesting rate of H = 2 has been added. The equilibrium 

position drops from 4 without harvesting to 3 with harvesting. If harvesting were to 

cease for a sufficiently long period of time, the original equilibrium position would 

be restored. 

  

Intermittent harvesting 

 

Here we consider a simplified situation (Kreyszig, 2011, p 36, Qns. 37, 

38 and 39) where a = b = 1 and H = 0.2 to develop a model to illustrate 

sustainable harvesting.  

 

Equation (19) becomes: 
2y0.2)y(1y'  ,     (25) 

 

and equation (20) becomes: 

   y = 1/(1.25 – 0.75 e -0.8t).   (26) 

 

The equilibrium position without harvesting will be a/b or 1, and with 

harvesting will occur as t → ∞, giving y = 1/1.25 or 0.8 (Figure 10). 
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Figure 10. The logistic growth function solution with intermittent harvesting using 

the values a = b = 1 and H = 0.2. After an initial 3 unit time span when a 

harvesting equilibrium is reached, there follows an equal time span without 

harvesting when a higher equilibrium is reached. This process can be regarded as a 

predator-prey model and represents a system of sustainable harvesting. 

  
Here we can illustrate a model for intermittent and sustainable harvesting 

(Figure 10). An initial period of harvesting when an equilibrium is 

reached, there follows an equal time span without harvesting when the 

fishery is rested and a higher equilibrium is reached. This process can be 

regarded as a predator-prey model and represents a system of sustainable 

harvesting as population size oscillates within two equilibrium 

boundaries. 

 

Local species extinction  

 

Population below critical mass 

Here we consider Nurgaliev’s Law (http://www.nature.com/scitable/ 

knowledge/library) which relates the rate of change of the size of a 
population at a given time to population size: 

 

rate)death  - rate(birth           

Ay,ByAN  or  y'BN
dt

dN 22 
   (27) 

http://www.nature.com/scitable/
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where B is a birth rate proportionality constant, A is the corresponding 

death rate constant, and N or y is population size. Birth rate, B, is the 

probability of individuals of one gender (half the population) finding a 

mating contact with a member of the opposite gender.  

 

By analogy with equation (20), we can form a solution to this ODE as: 

 

BcAe

A
y

At 
 .    (28) 

 

We can notice from equation (23) that 0'y (equilibrium) when By(y-

A/B) =0 or y = 0 or A/B as can be verified from Figures 11 and 12. 

 

 
Figure 11. Using Equation (24) with A = 4, B=1 and values of c as shown in the 

legend, we find an initial period of unlimited growth of the population when y > A/B 

or 4. This initial period, of course, must eventually be followed by a period when the 

population density braking term takes effect. 
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Figure 12. Using Equation (24) with A = 4, B = 1 and values of c as shown in the 

legend, we find a decrease in population when y < A/B or 4 leading to extinction. 

 

We can also notice three different cases arising from Equation (23): 

 

(i) if 0'y , By2 > Ay and so y > A/B (Figure 11); 

(ii) if 0'y , Ay > By2 and so y < A/B (Figure 12); 

(iii)  if 0'y , By2 = Ay and so y = A/B (blue line in Figure 11). 

 

For case (i) we have unlimited growth, at least initially and before density 

dependence takes effect, and for case (ii) we have progression to zero 

population and so local species extinction. A physical interpretation of 

(ii) is that the initial population is so low that individuals of the species 

are so sparsely distributed that they have difficulty finding mating 

partners. Thus we also have the concept of a critical population mass 

required for species survival. 

 

Overharvesting 

Local species extinction can also result from a level of harvesting leading 

to population dropping below a certain critical level. Here we consider 

equation (16) with a harvesting term added: 

H
K

N
rrN

dt

dN 2

     (29)
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where N = Nt, the population at time t, and H is now the harvesting rate 

expressed as catch size per unit of time. At equilibrium, dN/dt = 0 which 

gives rise to the quadratic equation: 

 

0 = -rN2/K + rN -  H,    (30) 

 

which will have real solutions when (using the well–known quadratic 

formula result b2-4ac ≥ 0): 

 

r2 – 4(-r/K)(-H)  ≥  0, 

whence 

r2 ≥ 4(rH/K), 

or 

H ≤ r2 K/4r. 

 

At a harvest rate greater than this, there will be no (real number) solutions 

to the quadratic, so no equilibrium population reached (dN/dt will never 

= 0), and this level of harvesting will again lead to local extinction of the 

species.  

 

We can note that for a single real solution to equation (30), (b2 -4ac = 0), 

the population size will be a minimum value (-b/2a from the quadratic 

equation solution): 

 

N = -r/(-2r/K) = K/2. 

 

Thus, the smallest population remaining after harvesting which will 

avoid the population going to extinction is half the carrying capacity, K. 

Again, this can be interpreted as the population density falling below a 

critical mass such that individuals of the species cannot find a sufficient 

number of mating partners to sustain a viable population.  

 

Summary and Conclusion 

This paper was developed in the context of the need for growth models 

for sustainable fisheries. It has initially noted certain invariant properties 

of the exponential function which make it suitable for modelling initial 

growth of populations, at least until the constraints of population density 
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and harvesting take effect and the logistic equation will be required. The 

logistic equation, a first order linear ODE based on empirical data, was 

shown to model both fish size growth and population growth. The 

solution to the ODE has shown that, in a given fishery, for example, there 

can exist an equilibrium population towards which both larger (non-

sustainable) and smaller (growing) populations will tend (Figure 8). The 

logistic equation modified to account for harvesting produces a reduction 

in the equilibrium population (Figure 9). Intermittent harvesting (Figure 

10) shows sustainable harvesting with population oscillating between 

two equilibrium positions when periods of harvesting are separated by 

periods of resting.  Finally, local extinction of species was shown to 

occur when a population falls below certain critical values such as when 

only birth and death rates are considered (Figures 11 and 12) for initial 

growth and secondly when the level of harvesting is such that population 

falls below half the carrying capacity of the fishery. In both cases the 

interpretation can be made that population density is so low that 

individuals cannot find sufficient number of mating partners to maintain 

a positive growth rate. 
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