
 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 73

Simulating a Lognormal Distribution: A Monte Carlo method

 Cyril Sarsoruo

Raunu Gebo

 Peter K Anderson

Abstract

The lognormal distribution is useful for modelling distributions showing positive

skewing. Such distributions have long since been associated with the Law of

Proportionate Effect which implies that certain random variables are composed of

more elementary variates multiplied together (rather than added as in the production

of a normal distribution). Attempts have been made to simulate a lognormal

distribution by multiplying sequences of vitiates based on both uniformly and

normally distributed interactive events using a Monte Carlo method of simulation.

QQPlots are used to compare simulated distributions with the associated theoretical

distributions. Data fits within the 95% confidence limits to support equivalence

between simulated distributions and theoretical distributions have been obtained.

Key words: Probability distribution, frequency distribution, cumulative frequency distribution,

lognormal distribution, law of proportionate effect.

Introduction

Well known probability or frequency distributions arising from those used in statistics model the

behavior of random variables whose characteristics are known. These variables arise from various

real world situations. When a particular distribution can be fitted to a set of empirical data, the

distribution is commonly used to make predictions about probable future behavior of the system

generating the data. However, the fitting can also be used to suggest assumptions about the origin

or causes of the empirical data based on knowledge of characteristics of the variable giving rise to

a particular distribution (e.g. Law, 2013, p.61).

This paper (a further development of Anderson, 2014) will use Monte Carlo simulation to model

the Law of Proportionate Effect and then compare the resulting frequency distribution with a

closest fitting lognormal theoretical distribution. The paper seeks to demonstrate the influence of

this law on many observed distributions showing positive skewing and being reasonably well fitted

to a lognormal distribution (Aitchison & Brown, 1969; Crow & Shimizu, 1988) which also exhibits

positive skewing. In a subsequent paper (Gebo & Anderson, this volume) the positive skewing of

per Capita Gross National Income (GNI) data will be shown to suggest a lognormal distribution

from which the influence of the Law of Proportionate Effect can be inferred and the well-known

adage that the “rich get richer and the poor get poorer” can be verified.

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 74

The generated variable from the Law of Proportionate Effect will be shown to display a lognormal

distribution. With the lognormal distribution, the contributing factors are known to multiply rather

than add together. This is in contrast to the well-known normal distribution in which the randomly

varying contributing factors are independent (without interaction) and simply add together.

Law of Proportionate Effect

When a random variable is the total effect of a large number of qualitatively different interacting

factors, such that the influence of one factor is proportional to the magnitude of the other factors,

we have the Law of Proportionate Effect.

As an example of interacting factors, consider a variable x as the time for human recovery after a

medical operation (cf. Lawrence, 1988). Influencing factors might be seriousness of the operation

(SO), age of patient (AP) and state of health (SoH) of the patient. The effect of AP is reasonably

dependent on SO (e.g. being greater for more serious operations) or on SoH and so on. Such more

elementary variables, therefore, combine their influence in a multiplicative, rather than an additive

way (as noted with the normal distribution).

Thus, if T0 is the recovery time for a patient after an average operation:

T1 = T0 + 1T0 = T0 (1 + 1)

where 1 is a random proportion of T0 for the effect of SO;

T2 = T1 + 2T1 = T1 (1 + 2)= T0 (1 + 1) (1 + 2)

and where 2 involves the effect of AP. Similarly, we can write:

T3 = T2(1 + 3) = T0 (1 + 1) (1 + 2) (1 + 3)

indicating the multiplicative effect of the factors influencing the time of recovery after an

operation.

In general, the multiplicative effect can be represented as:

Tj = Tj-1(1 + j) or Tj - Tj-1 = jTj-1 (1)

which is a recurrence relationship where epsilon j is a random proportion of Tj-1, the index j is an

integer ranging from 1 to n, and Tj is a variable (recovery time in this example) resulting from n

multiplicative effects. This embodies the previously mentioned the law of proportionate effect: the

change in the value of a variable at any step of the process is a random proportion of the previous

value of the variable (Aitchison & Brown, 1969: 22) working back through previous steps in a first

order recurrence sequence.

Lognormal Distribution

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 75

Variables resulting from such multiplicative effects of many small, qualitatively different,

elementary variables may be transformed into normal random variables with the natural logarithm,

ln(x), function (in which multiplicative effects become additive) and ln(x) is distributed as N(,2)

where N denotes a normal distribution with mean  and variance 2 . The form of the function:

where z = (ln(x) - )/ (2)

has a shape characterized by positive skewing, a peak near zero, a lower bound on the x axis, and

the mode and median score falling below the mean. The parameters  and 2 are, respectively, the

mean and variance of the normal distribution which would be obtained by considering the natural

log of the X variable values (ln x). For the lognormal distribution the corresponding parameters

are: expected value: exp(+0.52), variance: (exp(2-1)exp(2+2), mode: exp(-2) and

median: exp .

Figure 1. Variations in Lognormal

distributions as the scale parameter σ varies

with values (0.1, 0.2, 0.3 & 0.7) with position

parameter µ =0 constant.

Figure 2. Variations in Lognormal

distributions as the position parameter µ

with values (0, 0.3, 0.7, 1) varies with scale

parameter σ =1 constant.

The effect of these parameters is firstly to explain the positive skewing given that the expected

value, mode and median are all different and so separated. Secondly they allow considerable

variation in possible patterns of data that the lognormal function (2) can fit. The parameter σ

functions as a scale parameter (Figure 1, where µ is kept constant) and µ as a position parameter

(Figure 2, where σ is kept constant). This suggests that there is a strong possibility that some form

of the lognormal function may be found to fit empirical data characterized by a lower limit of zero

and typically small rather than large values.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5 4

Scale Parameter

0,0.2 0,0.3 0.0.7 0,1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3 3.5 4

Position Parameter

0,1 0.3,1 0.7,1 1,1

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 76

Monte Carlo Simulation with Excel

The Monte-Carlo method (Manno, 1999) is used to simulate random variables based on the Law

of Proportionate Effect using computer and statistical software. For purposes of modeling of this

origin of lognormal distributions, random variables were generated with both a spreadsheet (Excel,

2010) and the R platform for data analysis (Kabacoff, 2011). The simulations considered 5000

theoretical income earners, with initial capital I0 ($1000), being rewarded with 30 periodic

incomes, each of which was a proportion of the income from the previous period (Proportionate

Effect).

The total accumulated wealth for each earner, from the law of proportionate effect (see (1) above),

is given by:

In = I0(1+r1)(1+r2).(1+rn), (3)

for n periods of income earning. For the spreadsheet simulation the random proportion value ri was

generated with the RANDBETWEEN function (a uniform distribution) being used to generate the

random interactions between successive income values in each simulation as in the following:

Xj = Xj-1*(1 + RANDBETWEEN(1,10)/10).

The effect of this function as displayed here is to generate successive ri values uniformly

distributed between 0.1 and 1. The final result (in column 31 where column 1 contains the initial

capital and the other columns the successive wealth values) was then divided by an appropriate

power of 10 to produce a number between 3 and 5 digits. The effect of this simulation was to

produce a characteristic lognormal distribution (Figures 3 & 4) with large positive skewing and a

preponderance of small values. The strong positive skew shows how initially equal wealth units

become separated with time as a result of purely random effects.

Frequency Distributions

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

Simulated data

Lognormal

Cumulative Frequency

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Simulated data

Lognormal

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 77

Figure 3. Simulated frequency

wealth data for a theoretical set of

income earners where yearly

income is a random fraction of the

previous year’s income.

Figure 4. Cumulative frequency

data resulting from the simulation as

described for Figure 3.

The simulated data (red) appears to quite closely fit the corresponding lognormal theoretical

distribution, a closeness to be explored later in the paper.

Monte Carlo Simulation with R Script

A second simulation was carried out using R programming (Kabacoff, 2011), an open source

scripting language. A script (see Appendix: R Source Code, I) was used to generate random

incomes but this time the proportion variable (ri) was drawn from a standard normal distribution

(rather than the uniform random distribution used with the spreadsheet simulation above).

Because this variable can take positive and negative values, all the standard increments were

multiplied by a factor of 3% before addition to prevent negative incomes. Such a factor could

conceivably correspond to common interest rates, a base rate at which money could accrue.

Figure 5. Histogram of data simulated

using a standard normal distribution to

model the fraction of the previous year’s

income. The red line shows a best fit

lognormal frequency distribution.

Figure 6. qqPlot of quantiles for

simulated data (y axis) and theoretical

distribution (x axis) falling with most

points lying between the red 95%

confidence interval lines.

Histogram of Simulation

Simulation

D
e

n
si

ty

500 1000 1500 2000

0
.0

0
0

0
0

.0
0

0
5

0
.0

0
1

0
0

.0
0

1
5

0
.0

0
2

0
0

.0
0

2
5

600 800 1000 1200 1400 1600 1800

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

lnorm quantiles

S
im

u
la

ti
o

n

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 78

The R script also generated a frequency histogram for 5000 income earners after 30 income earning

periods (Figure 5) with a best fitting lognormal curve shown as an apparently well-fitting overlay.

Also confirming a lognormal fit to the data is the Quantile-Quantile plot (qq Plot in Figure 6) used

to determine if two data sets come from populations with a common distribution. If they do come

from the same distribution, plotted points should fall on the 45o reference line which they clearly

do in this simulation with most points lying between the 95% confidence lines shown in red.

Figure 7. Comparative

frequency distributions,

simulated and theoretical, from a

5000 run simulation using data

generated using the. Input

Analyzer

Figure 8. Comparative

cumulative frequency

distributions, simulated and

theoretical, from a 5000 run

simulation.

Frequency Distributions

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

Simulated data

Lognormal

Cumulative Frequency

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Simulated data

Lognormal

Frequency Distributions

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

Simulated data

Lognormal

Cumulative Frequency

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Simulated data

Lognormal

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 79

Figure 9. Comparative frequency

distributions, simulated and

theoretical, from a 10000 run

simulation using data generated

using the Input Analyzer.

Figure 10. Comparative

cumulative frequency

distributions, simulated and

theoretical, from a 10000 run

simulation.

Further graphic displays (Figures 7 to 10, using the Input Analyzer display tool from Arena

simulation software (Kelton et al., 2010) show the relation between simulated data (red lines) and

corresponding theoretical lognormal distributions (blue lines). For reasons which are not presently

clear, these graphs show a somewhat poorer closeness of fit than do those obtained from the R

script (Figure 6), although running the simulation for 10000 cases (Figures 9 & 10) does show a

visible improvement on the simulation run for 5000 cases only (Figures 7 & 8).

Monte Carlo Simulation of Uniform Distribution with R Script

The third simulation carried out using R programming (Kabacoff, 2011), was used also to generate

random incomes but this time the proportion variable (ri) was drawn from a uniform distribution.

Multiplicative proportion variable (ri) are uniformly generated with reference to the central limit

theorem (Crawly, 2005, p55).

Histogram of Simulation

Simulation

D
en

si
ty

1300 1400 1500 1600 1700 1800 1900

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

1300 1400 1500 1600 1700 1800

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

Theoretical Quantiles

S
im

u
la

te
d

 Q
u

a
n

til
e

s

Figure 11. Histogram of data simulated using

a uniform distribution to model the fraction of

the previous year’s income. The red line shows

a best fit lognormal frequency distribution.

Figure 12. qqPlot of quantiles for simulated

data (y axis) and theoretical distribution (x

axis) falling with most points lying between

the red 95% confidence interval lines.

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 80

The density scale (Figure 11) of 0.005 results from the mean being randomly generated are from

the parameters lowest value of zero (0) and highest value (1) (see Appendix: R Source Code, III).

The Quantile-Quantile plot (qq Plot in Figure 12) falls on the 45o reference line with most points

lying between the 95% confidence lines shown in red. Here (Figure 12) the simulated quantiles y

axis (end scale y =1800) is almost equal to the theoretical quantiles x axis (end scale x = 1800)

which signifies that the lognormal distribution proportion random variables (ri) generated from a

uniform distribution.

Variation of qqPlots from Lognormal and Normal Distributions

Deviations of quantiles away from the 45o degree line in the qq-plot graphs, signifies that the

sample data is distributed outside of its 95% confidence interval. This means by statistical theory,

the mean calculated is not a true mean and data is not in the range of the 95% confidence interval.

To simulate qq plots deviating away from the 45o degree line, we produce the scenario below as

shown in (figure 13) and its associated qqPlot (figure 14).

Figure 13. Histogram of data simulated using

5000 random values. The red line shows a best

fit lognormal density function.

Figure 14. qqPlot showing initial points on

the line, middle points below and close to the

line whilst the end points are below and far

away from the blue line 95% confidence

interval lines.

Using the R scripts (Appendix: R Source Code, II & IV), the in-built function qqPlot (with an

upper case P) produces the lognormal distribution. The qqPlot function generates theoretical data

from the empirical log mean and log standard deviation as parameters provided. The values of the

histogram (figure 13) generated from 5000 random values using the rlnorm R function (Appendix:

R Source Code, V). The histogram (figure 13) is developed using a multiplicative effect by of

multiplying 2.5 to positive values in the vector of R script. This effect scatters end values and

shows a right skewing. The associated qqPlots (figure 14) with end quantiles deviate away from

the 45o degree line. This means the data is not distributed within the 95% confidence interval. The

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 81

GNI data (Gebo & Anderson, this volume) contains practical examples using a similar method to

this analysis.

Standard and uniform normal distributions were used in this paper to discuss the lognormal

distributions. The Normal distribution is used as its histogram determines the types of skewing.

From this observation, a best distribution may be used to distribute the data. Below are different

(figures 15 to 22) showing the different types of normal distribution with their associated qqPlots

(Appendix: R Source Codes, VI).

Figure 15. Histogram of data simulated using

5000 random values. The red line shows a best

fit normal density function.

Figure 16. qqPlot of quantiles for simulated

data (y axis) and theoretical distribution (x

axis). The blue line shows 45o degree reference

line

Figure 17. Histogram of data simulated Figure 18. qqPlot of quantiles for simulated

data (y axis) and theoretical distribution (x

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 82

using 5000 random values. The red line shows

a best fit normal density function.
axis). The blue line shows 45o degree

reference line

Figure 19. Histogram of data simulated using

5000 random values. The red line shows a

best fit normal density function.

Figure 20. qqPlot of quantiles for simulated

data (y axis) and theoretical distribution (x

axis). The blue line shows 45o degree

reference line.

Figure 21. Histogram of data simulated using

5000 random values. The red line shows a

best fit normal density function.

Figure 22. qqPlot of quantiles for simulated

data (y axis) and theoretical distribution (x

axis). The blue line shows 45o degree

reference line.

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 83

Conclusion

Probability or frequency distributions exhibit intimate relationships which make explicit their

properties, underlying assumptions and the nature of the causes which produce such distributions

in real systems. Knowing the physical and other characteristics of an entity exhibiting random

behavior, a suitable choice of distribution function may be made to model that behavior.

This paper has used Monte Carlo simulation methods to generate probability distributions based

on the Law of Proportionate Effect. Simulations have been effected with both Excel (using a

uniform distribution) and R script (using a standard normal and uniform distribution) to generate

proportionate random variables of (ri).

The generated distributions show positive skewing typical of lognormal (and related) distributions.

They also show at least visual evidence of following the pattern of lognormal distributions. In

qqPlots, generated data has been shown to lie within the 95% confidence limits required for a

lognormal distribution. Right skewing of lognormal distribution with end values deviating away

from the 45o degree reference line was shown. Different types of normal distributions with their

associated qqPlots were also shown.

The paper now paves the way to examine certain empirical data distributions exhibiting lognormal

characteristics to infer the processes from which they originated (Gebo & Anderson, this volume).

References

Aitchison, J., & Brown, J.A.C. (1969). The Log-normal Distribution. UK: Cambridge Uni. Press.

Anderson, P.K., (2014). Human Development Index: PNG progress and a possible explanation.

In Contemporary PNG Studies: DWU Research Journal, Vol. 21, in press, PNG: DWU Press

Crow, E.L., & Shimizu, K., (1988). Log-normal Distribution, Theory and applications. New York:

Mariel Dekker.

Law, A.M., (2013). Simulation Modelling and analysis. (5th Ed.) VS: McGraw Hill.

Gebo, R. & Anderson, (2019). The Human Development Index: PNG progress and a mathematical

explanation, p … this volume

A QQPlot Dissection kit: Retrieved 14 June 2019 from http://seankross.com/2016/02/29/A-Q-Q-

Plot-Dissection-Kit.html

Michael, J. Crawly. (2005). Statistics and Introduction to using R. UK: Imperial College London.

Kabacoff, R.L., (2011). R in Action, US: Manning.

http://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html
http://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 84

Kelton, W.D., Sadowski, R.P., & Swets, N.B., (2010). Simulation with Arena (5th Edn). Boston,

Ma: McGraw- Hill.

Lawrence, R.J. (1988). The Lognormal as Event-Time Distribution. In Crow, E.L., & Shimizu, K.,

(2008). Log-normal Distribution, Theory and applications (pp. 211-228). New York: Mariel

Dekker.

Manno, I., (1999). Introduction to the Monte-Carlo Method, Hungary: Budapest.

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes. New York:

McGraw-Hill.

Acknowledgements

We would like to extend special thanks to Dr R King, formerly of the University of Western

Sydney, who assisted with the R source code. Special thanks also to Ms. Raunu Gebo for reviewing

and giving insights to this paper. However, all errors of fact or quality of expression must remain

with the authors.

Authors

Mr Cyril Sarsoruo (Master’s Degree in Theoretical Mathematics)

Lecturer

Department of Mathematics & Computing Science

Divine Word University

Email: csarsoruo@dwu.ac.pg

Mr Sarsoruo holds a Masters in Theoretical Mathematics from the University of Silesia in Poland

and specializes in mathematical analysis. His research interests include functional equations,

functional inequalities and mathematical modelling using computer software.

Prof. Peter K Anderson PhD

Head, Department of Information Systems

Divine Word University

Email: panderson@dwu.ac.pg

Dr Peter K Anderson is Professor and foundation head of the Department of Information Systems

at DWU where he specialises in data communications. He holds a PhD in thermodynamic

modelling from the University of Queensland and his research interests include mathematics

modelling.

Appendix

R Source Code

mailto:csarsoruo@dwu.ac.pg
mailto:panderson@dwu.ac.pg

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 85

I. # Simulation of 30 increments added over time to a capital of $1000

library(distr)

library(MASS)

library(car)

n <- 30; # no of increments (columns) in each simulation

N <- 5000; # no of simulations (rows)

mult.fac <- 0.03 # Factor used to prevent negative incomes

Storage matrix for random normal variates (mean = 0, sd = 1) to be used as multiplying

factors in successive increments in the simulation.

stoch. incr <- matrix (rnorm (N*n, 0, 1), nrow = N, ncol = n)

Storage matrix for generated incomes temporarily filled with zeroes - to be overwritten

I <- matrix (0, nrow = N, ncol = n + 1)

I[,1] <- 1000 # Initial capital of $1000 inserted in col 1 of I

Seed the random generator to give reproducible results on repeated running of the script.

set. Seed (1271)

Simulation of data using multiplicative effect using In = I0(1+r1)(1+r2)……..(1+rn) (see

(3), text reference)

 for(i in 1:n){

 I[,i + 1] = I[,i]* (1 + mult.fac*stoch. incr [,i])

 }

#Result is a 5000 row by 31 column matrix

I.final <- I[,n+1] # Column 31 contains the final 5000 incomes stored in I.final

hist(I.final) # Displays the histogram of simulated data

Find the mean and standard deviation of a lognormal curve (meanlog, sdlog) best fitting

the simulated data

lnorm.fit <- fitdistr(I.final,"lognormal")

meanlog <- lnorm.fit$estimate["meanlog"] # 6.895 expected from given seeding

sdlog <- lnorm.fit$estimate["sdlog"] # 0.1664 expected from given seeding

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 86

Theoretical lognormal distribution: generate 5000 random lognormal variates from a

distribution with mean = meanlog and sd = sdlog.

lnrv = rlnorm(5000,meanlog,sdlog)

Combine histogram and probability density lines for comparison.

Simulation<- I.final

hist(Simulation, prob = T) # Display histogram

lines(density(lnrv), col = "red") # Display probability density graph

II. # QQplot to compare simulated data with corresponding theoretical lognormal

distribution

qqPlot(I.final, dist = "lnorm", meanlog = lnorm.fit$estimate["meanlog"], sdlog =

lnorm.fit$estimate["sdlog"]"], xlab = "Theoretical Quantiles", ylab = "Simulated Quantiles")

III. # Simulation of 30 increments added over time to a capital of $1000 by p

library(distr)

library(MASS)

library(car)

n <- 30; # no of increments (columns) in each simulation

N <- 5000; # no of simulations (rows)

mult.fac <- 0.03 # Factor used to prevent negative incomes

Storage matrix for random normal variates (lowest value = 0, highest value = 1) to be

used as multiplying factors in successive increments in the simulation.

stoch.incr <- matrix(runif(N*n, 0,1), nrow = N, ncol = n)

Storage matrix for generated incomes temporarily filled with zeroes - to be overwritten

I <- matrix(0, nrow = N, ncol = n + 1)

I[,1] <- 1000 # Initial capital of $1000 inserted in col 1 of I

Seed the random generator to give reproducible results on repeated running of the script.

set.seed(1271)

Simulation of data using multiplicative effect using In = I0(1+r1)(1+r2)……..(1+rn) (see

(3), text reference)

 for(i in 1:n){

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 87

 I[,i + 1] = I[,i]* (1 + mult.fac*stoch.incr[,i])

 }

#Result is a 5000 row by 31 column matrix

I.final <- I[,n+1] # Column 31 contains the final 5000 incomes stored in I.final

hist (I. final) # Displays the histogram of simulated data

Find the mean and standard deviation of a lognormal curve (meanlog, sdlog) best fitting

the simulated data

lnorm.fit <- fitdistr (I. final, “lognormal")

meanlog <- lnorm.fit$estimate["meanlog”] # 6.895 expected from given seeding

sdlog <- lnorm.fit$estimate["sdlog”] # 0.1664 expected from given seeding

Theoretical lognormal distribution: generate 5000 random lognormal variates from a

distribution with mean = meanlog and sd = sdlog.

lnrv = rlnorm(5000, meanlog, sdlog)

Combine histogram and probability density lines for comparison.

Simulation<- I.final

hist (Simulation, prob = T) # Display histogram

lines(density(lnrv), col = "red") # Display probability density graph

IV. #QQplot to compare simulate data with corresponding theoretical lognormal

distribution

qqPlot (I.final, dist = "lnorm", meanlog = lnorm.fit$estimate["meanlog"], sdlog =

lnorm.fit$estimate["sdlog"]"], xlab = "Theoretical Quantiles", ylab = "Simulated Quantiles")

V. # QQplot to compare simulated data with corresponding theoretical lognormal

distribution

library(distr)

library(MASS)

#right skewing lognormal

lnrv1 = rlnorm(5000)

skew_right <- c (lnrv1[lnrv1 > 0] * 2.5, lnrv1)

Simulation<-skew_right

hist (Simulation, prob = T) # Display histogram

lines(density(lnrv1), col = "red")

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 88

lnorm.fit <- fitdistr (skew_right, “lognormal")

meanlog <- lnorm.fit$estimate["meanlog"]

sdlog <- lnorm.fit$estimate["sdlog"]

qqPlot (skew_right, dist = "lnorm”, meanlog = lnorm.fit$estimate["meanlog"], sdlog =

lnorm.fit$estimate["sdlog"], xlab = "Theoretical Quantiles", ylab = "Simulated Quantiles")

VI. R code showing different types Normal Distributions.

normal_density are the y-values for the normal curve

zs are the x-values for the normal curve

n <- 5000

normal_density <- dnorm(seq(-4, 4, 0.01))

s <- seq(-4, 4, 0.01)

Add some spice to the default histogram function

hist_ <- function (x, ...) {

hist (x, breaks = 30, xlab = "Z", ylab = "", yaxt='n', freq = FALSE, ...)

lines (zs, normal_density, type = "l", col = "red", lwd = 2)

}

rnorm() generates random numbers from a normal distribution

norm_rv is the dataset that will be compared to the Normal distribution

norm_rv <- rnorm(n)

Draw the Q-Q plot

qqnorm(norm_rv)

qqline(norm_rv, col = "blue", lwd = 2)

Skewed Right

skew_right is the dataset that will be compared to the Normal distribution

skew_right <- c(norm_rv[norm_rv > 0] * 2.5, norm_rv)

hist(skew_right, main = "Skewed Right", ylim = c(0, max(normal_density)))

qqnorm(skew_right)

qqline (skew_right, col = "blue", lwd = 2)

Skewed Left

skew_left is the dataset that will be compared to the Normal distribution

skew_left <- c(norm_rv[norm_rv < 0]*2.5, norm_rv)

hist(skew_left, main = "Skewed Left", ylim = c(0, max(normal_density)))

 Electronic Journal of Informatics Volume 1 June, 2019: Divine Word University 89

qqnorm(skew_left)

qqline(skew_left, col = "blue", lwd = 2)

Fat Tails

fat_tails <- c(norm_rv*2.5, norm_rv)

hist(fat_tails, main = "Fat Tails", ylim = c(0, max(normal_density)), xlim = c(-10, 10))

qqnorm(fat_tails)

qqline(fat_tails, col = "blue", lwd = 2)

Thin Tails

thin_tails <- rnorm(n, sd = .7)

hist(thin_tails, main = "Thin Tails")

qqnorm(thin_tails)

qqline(thin_tails, col = "blue", lwd = 2)

