
36 Anderson, Some issues in solving non-linear polynomial equations

Some issues in solving non-linear polynomial

equations

Peter K. Anderson

Abstract

A simple geometrical problem generates a degree 8

polynomial function after firstly applying Pythagoras’

Theorem and then squaring the resulting equation to

derive a more elegant polynomial equation. Real and

complex solutions are explored by root finding functions

available in R packages together with other readily

available software. The degree 8 polynomial has 4 real

and 4 complex solutions as expected. Squaring introduces

extraneous solutions and only one of the final 8 solutions

solves the Crossed Ladders problem explored in the text.

Keywords: similar triangles, polynomials, R, 1[D] root

finding.

Introduction

Some mathematical problems are innately complicated, and some,

perversely, need to be made so, according to the dictum of a great

mathematician: “Mathematics makes easy things hard in order to

make hard things easy”
1
. There are some, however, which are

framed in simple terms, but which turn out to be unexpectedly

difficult. From Archimedes (c. 500 BC) is said to have originated

the famous “cattle problem” (Dickson, 1919). It involved

numbers of cattle of different sorts and different colours and

involved solving an equation with only two squares
2
. However, an

integer solution consisted of 41 digits! The NQueens problem

(Campbell, 1977) involving the positioning 8 queens on an 8 x 8

1 TG Room, Advice to students, Professor of pure mathematics University of Sydney 1935-40,

1945-68.
2 https://mathworld.wolfram.com/ArchimedesCattleProblem.html

Electronic Journal of Informatics Vol. 3 December 2020 37

chessboard and had 12 fundamental solutions
3
, yet it took Gauss

(1777 – 1855) 2 years to complete the solution.

In the light of such experiences, this paper will consider a

seemingly simple geometrical problem, the Crossed Ladders

Problem
4
 (source unknown), which although hardly meriting the

description of a ’problem’, nonetheless, is not without its interest,

generating, as it does, an 8 degree polynomial equation from a

simple analysis using the well-known Pythagoras’ Theorem.

What might once have taken years to solve in detail, is now

readily solvable with computer software.

Crossed ladders problem

We provide a context for solving polynomial equations with

equations resulting from applying Pythagoras’ theorem to solve

the Crossed Ladders Problem. Consider two ladders of respective

lengths 3m and 4m leaning across a narrow path by making

angles with vertical walls on each side (Figure 1). Their crossing

point is at a height of 1m above the path. We are required to find

the width of the path.

Figure 1 Two ladders of respective

lengths 3m and 4m lean across a

narrow path by making angles with

vertical walls on each side.

Figure 2 shows again the two ladders

with a perpendicular line drawn down

from their intersection point O.

3 https://www.geeksforgeeks.org/n-queen-problem-backtracking-3/

4 https://mathworld.wolfram.com/CrossedLaddersProblem.html

38 Anderson, Some issues in solving non-linear polynomial equations

The corresponding labelled diagram (Figure 2) is shown with a

perpendicular line drawn down from the intersection point O, set

at 1m above the path. We let A0 = x, B0 = y, AB = p, OL = 3 − x,

OM = 4 − y, ML = q, BL = d, and lastly, BC = l. We are required

to find d.

Examination of the figure shows a number of relationships, the

first stemming from Pythagoras’ theorem:

l
2
 + 1 = y

2
 (1)

d
2
 + q

2
 = 16 (2)

. (3)

Then, combining (1), (2) and (3) we have:

 (4)

Similarly, triangles LCO and LBA yield the further relationships:

Combining these three equations we have:

 . (8)

Now equations (4) and (8) contain only l and d. Since the former

is not needed, an equation in d, the required width, may be formed

by making l the subject of each equation. Thus, after separately

squaring (which will, of course, introduce unwanted solutions)

and inverting each of equations (4) and (8), we obtain:

 √

 (9)

and so

 (10)

Electronic Journal of Informatics Vol. 3 December 2020 39

whence

 .(11)

Eliminating d (presuming d ≠ 0) from the numerators yields the

following equation:

 . (12)

which, although not in a particularly elegant form for solving, at

least, contains only d.

Initial inspection

The following section of the paper uses command lines from the

R statistical computing and graphics programming language.

Denoting equation (12) as a function f, graphing is obtained using

the following two commands from the Curve function
5
 in R:

(i) curve(f, from = -3, to = 3, col = “red”, lwd = 2, xname

= “d”)

(ii) abline(h = 0, lty = 3).

The second command (ii) contains standard R graphical

parameters; in the first command (i) the limits -3 and 3 come from

the obvious physical constraints of the problem. Thus, initial

plotting of

f12(d) = (1/(16-d
2
))

0.5
 + (1/(9-d

2
))

0.5
 -1

(Figure 3) indicates 2 possible solutions to eqn. (12) here

designated as f12(d) = 0. The negative value of d, of course, is not

physically tenable and was introduced by the squaring process.

5 https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/curve

40 Anderson, Some issues in solving non-linear polynomial equations

Figure 3 Initial plotting to search for solutions to

equation (12) where f12_(d) = 0. Two solutions are

evident with the negative value of d, of course, not

physically tenable and introduced by the squaring process

Solutions from uniroot in R

A root-finding technique for polynomials within an interval is

available with the function uniroot in the R rootSolve package.

Based on the well-known bisection method of successive

approximation, it requires the input of a function, and an interval,

at one end of which the function is positive, at the other, negative

and so passing through zero. This is a strong assumption, often

calling for the inspection of the function by plotting as provided

above (Figure 3).

Depending on the difficulty of the function, plotting may be

required to find two points which may enclose a root. Then the R

command would be of the following form:

uniroot(f, c(0,3)).

Since f is a simple function, other possible arguments for uniroot

(dealing with tolerance and maximum number of iterations) need

not, in this instance, be specified. Their default values are

displayed in the output, the key parts of which are the value of the

root, and the value of the function at the root, typically not exactly

zero, but approximately so.

Electronic Journal of Informatics Vol. 3 December 2020 41

Thus, applied to equation (12) with a search domain of [0,3]

uniroot readily gives d = 2.603288, which finishes the problem

there, noting that, while d = −2.603288 may be also a

mathematical solution, it is non - applicable for the physical

situation, being a negative of distance.

Further development

With some further algebraic development, it is possible to

produce an explicit expression for d, i.e. one that is free of

radicals. Thus, rearranging equation (12) and squaring (again

raising the possibility of the further addition of superfluous

solutions) gives:

 + 1 (13)

which, after squaring again, yields:

 . (14)

Then after multiplying out and re-arranging we have the equation:

 d
8

− 46 d
6
+ 763 d

4
− 5374 d

2
+ 13585 = 0. (15)

This is the degree 8 polynomial mentioned previously in the

introduction, and there is some interest to be had in determining

its roots. Denoting eqn. (15) as function g15(d) and again

applying uniroot, after some plotting, the function yields d =

2.60329, as previously, with a function value at the zero of -

0.0031118, although no other root.

Initial inspection

Initial plotting of

g15(d) = d
8

− 46 d
6

+ 763 d
4

− 5374 d
2

+ 13585

(Figure 4) indicates 8 possible solutions (4 real and 4 complex) to

eqn. (15) located symmetrically about the y axis and shown in

greater detail in graphical displays (Figures 5 & 6).

42 Anderson, Some issues in solving non-linear polynomial equations

Figure 4 Initial graph of polynomial g15(d) permitting

overall inspection.

There are 4 minimum turning points which would produce 8 real

solutions if all minima lay below the x-axis and the curves cut the

axis in 8 places. As only two minima lie above the x-axis, 4 out of

the 8 possible solutions are complex.

Figure 5 Plot of eqn. (15) LHS as a function of d locating approximate

negative (LHS) and positive (RHS) positions of roots or real and complex

zero solutions.

Solver optimisation tool

Solver, available as an Excel add-in, is an optimisation tool

finding maximum, minimum, or zero values in an objective cell,

subject to given constraints or limits
6
. With a given starting point,

6 https://www.solver.com/excel-solver-online-help

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

-5 -3 -1 1 3 5

f1
5

(d
)

d

Electronic Journal of Informatics Vol. 3 December 2020 43

Solver will stop after finding the first point satisfying the set

conditions. Thus, it might find relative minima or maxima but not

necessarily absolute values. The choice, therefore, has to be made

of starting points for iterative searches after the overall shape of

the polynomial curve has been determined (Figure 4).

Results of searches of polynomial g15(d) using the Solver

optimisation tool (Table 1) show two zeros where a minimum lies

below the x axis and a minimum only where it does not (Figure 5,

RHS). In the latter case, we can expect to find complex roots.

Initial starting points were determined by inspection of Figure 4.

Solutions for –ve x starting points are not necessary because of

the symmetry of the curve.

Table 1 Results of searches of polynomial g15(d) using

the Solver optimisation tool showing two zeros where a

minimum lies below the x axis and a minimum where it

does not (Figure 5).

Initial value of d

(Search starting point)

Solution value of d

2 2.60328781925415 (zero)

3 2.90907216330945 (zero)

4 3.91635300301455 (min)

5 3.91635300301455 (min)

Uniroot.all

Within R’s rootSolve package there is also a function uniroot.all

which is designed specifically to identify multiple function roots

within an interval, by division into sub-intervals
7
. It needs to be

made available first via the command library(rootSolve) (see

Appendix). Then, the minimum syntax (omitting some optional

arguments) is similar to that required for uniroot:

uniroot.all(g, c(2.90970, 2.90975)),

which provides a +ve root (Figure 5) as d = 2.909072.

7 https://www.rdocumentation.org/packages/rootSolve/versions/1.8.2.1/topics/uniroot.all

44 Anderson, Some issues in solving non-linear polynomial equations

Figure 6 A closer examination again of

shows the zero position between 2.909072

and 2.909073.

The syntax:

uniroot.all(g, c(2.0, 2.9)),

provides a second root (Figure 5) as d = 2.603288.

Corresponding –ve roots are readily available by symmetry.

Polyroot

Also within R there is the polynom package
8
, with a function

solve
9
 which is designed to reveal the complex roots of a

polynomial. Here we enter the polynomial considered in this

paper:

g15(d) = d
8

− 46 d
6

+ 763 d
4

− 5374 d
2

+ 13585

in the following format:

polynomial(8:1)

8 + 7*x + 6*x^2 + 5*x^3 + 4*x^4 + 3*x^5 + 2*x^6 + x^7

> p <- as.polynomial(c(13585,0,-5374,0,763,0,-46,0,1))

> p13585 - 5374*x^2 + 763*x^4 - 46*x^6 + x^8

> solve(p)

8 https://www.rdocumentation.org/packages/polynom/versions/1.4-0

9 https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/solve

Electronic Journal of Informatics Vol. 3 December 2020 45

Both real and complex solutions are obtained as follows (c.f. Figure 5):

(i) Real Solutions where g15(d) cuts the x axis:

-2.909072 -2.603288

2.603288 2.909072,

(ii) Complex solutions (Figure 7) where g15(d) minima lie above,

and so does not cut, the x axis:

z1 = 3.922411 - 0.072176i z2 = 3.922411 + 0.072176i

z3 = -3.922411 - 0.072176i z4 = -3.922411 + 0.072176i.

Figure 7 Complex roots (3.922411 ± 0.072176i, -3.922411 ± 0.072176i)

shown on Real and Imaginary axes of an Argand diagrams to be compared

with Figure 5 where minima do not cut the x axis and so complex or imaginary

roots are formed.

These solutions are complex (imaginary) rather that real, but will

still solve the g15(d) = 0 polynomial, with the imaginary

components becoming real upon squaring.

Allroots() function in Maxima

Maxima is a computer algebra system used for the manipulation

of symbolic and numerical expressions. It yields high precision

46 Anderson, Some issues in solving non-linear polynomial equations

numeric results and plots functions and data in two and three

dimensions
10

.

For solving again the polynomial:

g15(d) = d
8

− 46 d
6

+ 763 d
4

− 5374 d
2

+ 13585,

the format used is:

 eqn: x^8-46*x^6+763*x^4-5374*x^2+13585;

 8 6 4 2

 x - 46 x + 763 x - 5374 x + 13585

soln: allroots (eqn);

giving the Real solutions (c.f. Figure 5):

x = 2.603287754423185, x = - 2.603287754423191,

x = - 2.909072186343945, x = 2.909072186343939.

and the Complex solutions (c.f. Argand diagram, Figure 7):

x = 0.07217649359882254 i + 3.92241066021693,

x = 3.92241066021693 - 0.07217649359882254 i,

x = 0.0721764935987751 i - 3.922410660216924,

x = - 0.0721764935987751 i - 3.922410660216924.

all of which satisfy g15(d). Thus, all 8 roots of the 8 degree

polynomial are accounted for.

Summary and conclusion

A simple geometrical problem was shown to generate a degree 8

polynomial function after firstly applying Pythagoras’ Theorem

and then squaring the resulting equation to derive a more elegant

polynomial equation. Real and complex solutions were found by

root finding functions available in R packages together with other

readily available software.

10 https://swmath.org/software/560

Electronic Journal of Informatics Vol. 3 December 2020 47

The polynomial has 4 real and 4 complex solutions as expected.

Squaring introduces extraneous solutions and only one of the final

8 solutions solves the Crossed Ladders problem. We notice that

while the value d = ± 2.909072 satisfies equation (15), it does not

satisfy equation (12), and so is not a solution to the original

problem. There is, however, an interesting feature of this

extraneous root: it is hidden away between 2.909070 where

g15(d) is negative, and 2.909075 (Figure 6) where the function is

positively making its existence virtually undetectable by plotting.

To summarize, there was an extra effort in the simple project of

casting equation (12) into an elegant form, and in finding and

discarding a spurious root, but there were also some useful

learnings involved.

References

Campbell, P. J. (1977). Gauss and the Eight Queens Problem.

Historica Mathematica, 4, 397-404.

Dickson L. E., (1919). The history of the theory of numbers

Carnegie Institute of Washington: Washington, US.

R Foundation. (2020). The R project for statistical computing

Retrieved 25 August 2020, from https://www.r-project.org

Wolfram. (2020). Mathematica Retrieved 25 August 2020, from

https://wolfram.com

Swmath. (2020). Maxima Retrieved 25 August 2020, from

https://swmath.org/software/560

Acknowledgements

The author acknowledges the assistance of Dr R King for helpful

and useful discussions and assistance with the initial R script.

Author

Peter K. Anderson, PhD

Head, Department of Mathematics & Computing Science, DWU

Email: panderson@dwu.ac.pg

48 Anderson, Some issues in solving non-linear polynomial equations

Appendix – Code used

library(rootSolve)

#--------------------------------#

uniroot

#If equation (12) is described as f

f <- function(d) { 1/sqrt(16 - d^2) + 1/sqrt(9 - d^2) -1 }

and the search interval is 0 -> 3

uniroot(f,c(0,3)) $root

gives d = 2.603288 and for more information, enter:

uniroot(f,c(0,3))

showing that the function value at the root is of the order of 1e-

07.

Thus:

f(2.603288)

satisfies equation (12), as by symmetry so does (-2.603288)

#--------------------------------#

The two following commands produce a plot of f:

curve(f, from = 0, to = 3)

abline(h = 0, lty = 3)

#--------------------------------#

if equation (15) is described as g

g <- function(d){ d^8 -46*d^6 + 763* d^4 -5374*d^2 +

13585}

For uniroot, some experimentation with the search endpoints is

needed to produce opposite signs bracketing a root.

Thus:

uniroot(g,c(2.0, 2.9))$root

gives d = 2.603288 as before.

#--------------------------------#

Applying uniroot.all using a similar syntax to uniroot:

uniroot.all(g, c(1, 3))

gives (i) 2.603291 which is a slightly less accurate value than

the previous 2.603288 because

Electronic Journal of Informatics Vol. 3 December 2020 49

abs(g(2.603291)) > abs(g(2.603288))

and also (ii) 2.909072, which, however, does not satisfy the

original eqn (12) since f(2.909072) is not zero or approximately

so.

--#

Plotting the new root of (15)

curve(g, from = 2.909070, to = 2.909075)

abline(h = 0, lty = 3)

--#

In Mathematica, g is defined as follows:

g[d_]: = d^8 -46*d^6 + 763* d^4 -5374*d^2 + 13585;

The syntax for finding a root(s) of a function g of d would be:

FindRoot[g, {d = s}] where 's' is some starting point.

real and complex roots come from the one command

test the complex roots of g by substitution

g(-3.92241 + 0.0721765i)

g(-3.92241 - 0.0721765i)

g(3.92241 + 0.0721765i)

g(3.92241 - 0.0721765i)

all of which give 0 (approximately).

Real & Complex solutions with Maxima

eqn: x^8-46*x^6+763*x^4-5374*x^2+13585;

8 6 4 2

 x - 46 x + 763 x - 5374 x + 13585

soln: allroots (eqn);

x = 2.603287754423185, x = - 2.603287754423191,

x = - 2.909072186343945, x = 2.909072186343939,

x = 0.07217649359882254 i + 3.92241066021693,

50 Anderson, Some issues in solving non-linear polynomial equations

x = 3.92241066021693 - 0.07217649359882254 i,

x = 0.0721764935987751 i - 3.922410660216924,

x = - 0.0721764935987751 i - 3.922410660216924

The result from Maxima was:

d = ±(−3.92241 ± 0.07217651i),

d = ± 2.909072, ± 2.60329,

