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Some issues in solving non-linear polynomial 

equations 

Peter K. Anderson 

Abstract 

A simple geometrical problem generates a degree 8 

polynomial function after firstly applying Pythagoras’ 

Theorem and then squaring the resulting equation to 

derive a more elegant polynomial equation. Real and 

complex solutions are explored by root finding functions 

available in R packages together with other readily 

available software. The degree 8 polynomial has 4 real 

and 4 complex solutions as expected. Squaring introduces 

extraneous solutions and only one of the final 8 solutions 

solves the Crossed Ladders problem explored in the text. 

 

Keywords: similar triangles, polynomials, R, 1[D] root 

finding. 

 

Introduction  

Some mathematical problems are innately complicated, and some, 

perversely, need to be made so, according to the dictum of a great 

mathematician: “Mathematics makes easy things hard in order to 

make hard things easy”
1
. There are some, however, which are 

framed in simple terms, but which turn out to be unexpectedly 

difficult. From Archimedes (c. 500 BC) is said to have originated 

the famous “cattle problem” (Dickson, 1919). It involved 

numbers of cattle of different sorts and different colours and 

involved solving an equation with only two squares
2
. However, an 

integer solution consisted of 41 digits! The NQueens problem 

(Campbell, 1977) involving the positioning 8 queens on an 8 x 8 

                                                           
1  TG Room, Advice to students, Professor of pure mathematics University of Sydney 1935-40, 

1945-68.   
2 https://mathworld.wolfram.com/ArchimedesCattleProblem.html 
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chessboard and had 12 fundamental solutions
3
, yet it took Gauss 

(1777 – 1855)  2 years to complete the solution.  

In the light of such experiences, this paper will consider a 

seemingly simple geometrical problem, the Crossed Ladders 

Problem
4
 (source unknown), which although hardly meriting the 

description of a ’problem’, nonetheless, is not without its interest, 

generating, as it does, an 8 degree polynomial equation from a 

simple analysis using the well-known Pythagoras’ Theorem. 

What might once have taken years to solve in detail, is now 

readily solvable with computer software. 

 

Crossed ladders problem 

We provide a context for solving polynomial equations with 

equations resulting from applying Pythagoras’ theorem to solve 

the Crossed Ladders Problem. Consider two ladders of respective 

lengths 3m and 4m leaning across a narrow path by making 

angles with vertical walls on each side (Figure 1). Their crossing 

point is at a height of 1m above the path. We are required to find 

the width of the path.  

 

  
Figure 1 Two ladders of respective 

lengths 3m and 4m lean across a 

narrow path by making angles with 

vertical walls on each side. 

Figure 2 shows again the two ladders 

with a perpendicular line drawn down 

from their intersection point O. 

 

 

                                                           
3 https://www.geeksforgeeks.org/n-queen-problem-backtracking-3/ 

4 https://mathworld.wolfram.com/CrossedLaddersProblem.html 
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The corresponding labelled diagram (Figure 2) is shown with a 

perpendicular line drawn down from the intersection point O, set 

at 1m above the path. We let A0 = x, B0 = y, AB = p, OL = 3 − x, 

OM = 4 − y, ML = q, BL = d, and lastly, BC = l. We are required 

to find d. 

Examination of the figure shows a number of relationships, the 

first stemming from Pythagoras’ theorem: 

l
2
 + 1 = y

2
    (1) 

d
2
 + q

2
 = 16    (2) 

.    (3) 

Then, combining (1), (2) and (3) we have: 

     (4) 

Similarly, triangles LCO and LBA yield the further relationships: 

 
Combining these three equations we have: 

 .       (8) 

 

Now equations (4) and (8) contain only l and d. Since the former 

is not needed, an equation in d, the required width, may be formed 

by making l the subject of each equation. Thus, after separately 

squaring (which will, of course, introduce unwanted solutions) 

and inverting each of equations (4) and (8), we obtain: 

 

     √
  

           (9) 

and so 

      (10) 



Electronic Journal of Informatics Vol. 3 December 2020                                               39 

 

whence 

 .(11) 

Eliminating d (presuming d ≠ 0) from the numerators yields the 

following equation: 

 .   (12) 

which, although not in a particularly elegant form for solving, at 

least, contains only d. 

 

Initial inspection  

The following section of the paper uses command lines from the 

R statistical computing and graphics programming language. 

Denoting equation (12) as a function f, graphing is obtained using 

the following two commands from the Curve function
5
 in R: 

 

(i) curve(f, from = -3, to = 3, col = “red”, lwd = 2, xname 

= “d”)  

 

(ii) abline(h = 0, lty = 3).  

 

The second command (ii) contains standard R graphical 

parameters; in the first command (i) the limits -3 and 3 come from 

the obvious physical constraints of the problem. Thus, initial 

plotting of  

f12(d) = (1/(16-d
2
))

0.5
 + (1/(9-d

2
))

0.5
 -1 

 

(Figure 3) indicates 2 possible solutions to eqn. (12) here 

designated as f12(d) = 0. The negative value of d, of course, is not 

physically tenable and was introduced by the squaring process. 

  

                                                           
5 https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/curve 
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Figure 3 Initial plotting to search for solutions to 

equation (12) where f12_(d) = 0. Two solutions are 

evident with the negative value of d, of course, not 

physically tenable and introduced by the squaring process 

 

Solutions from uniroot in R 

A root-finding technique for polynomials within an interval is 

available with the function uniroot in the R rootSolve package. 

Based on the well-known bisection method of successive 

approximation, it requires the input of a function, and an interval, 

at one end of which the function is positive, at the other, negative 

and so passing through zero. This is a strong assumption, often 

calling for the inspection of the function by plotting as provided 

above (Figure 3).  

 

Depending on the difficulty of the function, plotting may be 

required to find two points which may enclose a root. Then the R 

command would be of the following form:  

uniroot(f, c(0,3)). 

 

Since f is a simple function, other possible arguments for uniroot 

(dealing with tolerance and maximum number of iterations) need 

not, in this instance, be specified. Their default values are 

displayed in the output, the key parts of which are the value of the 

root, and the value of the function at the root, typically not exactly 

zero, but approximately so.  
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Thus, applied to equation (12) with a search domain of [0,3] 

uniroot readily gives d = 2.603288, which finishes the problem 

there, noting that, while d = −2.603288 may be also a 

mathematical solution, it is non - applicable for the physical 

situation, being a negative of distance. 

 

Further development 

With some further algebraic development, it is possible to 

produce an explicit expression for d, i.e. one that is free of 

radicals. Thus, rearranging equation (12) and squaring (again 

raising the possibility of the further addition of superfluous 

solutions) gives: 

   + 1   (13) 

 

which, after squaring again, yields: 

       .             (14) 

 

Then after multiplying out and re-arranging we have the equation: 

 d
8 

− 46 d
6 
+ 763 d

4 
− 5374 d

2 
+ 13585 = 0. (15) 

 

This is the degree 8 polynomial mentioned previously in the 

introduction, and there is some interest to be had in determining 

its roots. Denoting eqn. (15) as function g15(d) and again 

applying uniroot, after some plotting, the function yields d = 

2.60329, as previously, with a function value at the zero of -

0.0031118, although no other root.  

 

Initial inspection 

Initial plotting of  

g15(d) = d
8 

− 46 d
6 

+ 763 d
4 

− 5374 d
2  

+ 13585 

 

(Figure 4) indicates 8 possible solutions (4 real and 4 complex) to 

eqn. (15) located symmetrically about the y axis and shown in 

greater detail in graphical displays (Figures 5 & 6). 
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Figure 4 Initial graph of polynomial g15(d) permitting 

overall inspection. 

 

There are 4 minimum turning points which would produce 8 real 

solutions if all minima lay below the x-axis and the curves cut the 

axis in 8 places. As only two minima lie above the x-axis, 4 out of 

the 8 possible solutions are complex. 

 

  
 

Figure 5 Plot of eqn. (15) LHS as a function of d locating approximate 

negative (LHS) and positive (RHS) positions of roots or real and complex 

zero solutions. 

 

Solver optimisation tool 

Solver, available as an Excel add-in, is an optimisation tool 

finding maximum, minimum, or zero values in an objective cell, 

subject to given constraints or limits
6
. With a given starting point, 

                                                           
6 https://www.solver.com/excel-solver-online-help 
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Solver will stop after finding the first point satisfying the set 

conditions. Thus, it might find relative minima or maxima but not 

necessarily absolute values. The choice, therefore, has to be made 

of starting points for iterative searches after the overall shape of 

the polynomial curve has been determined (Figure 4). 

 

Results of searches of polynomial g15(d) using the Solver 

optimisation tool (Table 1) show two zeros where a minimum lies 

below the x axis and a minimum only where it does not (Figure 5, 

RHS). In the latter case, we can expect to find complex roots. 

Initial starting points were determined by inspection of Figure 4.  

Solutions for –ve x starting points are not necessary because of 

the symmetry of the curve. 

 

Table 1 Results of searches of polynomial g15(d) using 

the Solver optimisation tool showing two zeros where a 

minimum lies below the x axis and a minimum where it 

does not (Figure 5).  

Initial value of d 

(Search starting point) 

 

Solution value of d 

2 2.60328781925415 (zero) 

3 2.90907216330945 (zero) 

4 3.91635300301455 (min) 

5  3.91635300301455 (min) 

 

Uniroot.all 

Within R’s rootSolve package there is also a function uniroot.all 

which is designed specifically to identify multiple function roots 

within an interval, by division into sub-intervals
7
. It needs to be 

made available first via the command library(rootSolve) (see 

Appendix). Then, the minimum syntax (omitting some optional 

arguments) is similar to that required for uniroot:  

uniroot.all( g, c(2.90970, 2.90975)), 

 

which provides a +ve root (Figure 5) as d =  2.909072. 

                                                           
7 https://www.rdocumentation.org/packages/rootSolve/versions/1.8.2.1/topics/uniroot.all 
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Figure 6 A closer examination again of 

shows the zero position between 2.909072 

and 2.909073. 

 

The syntax: 

uniroot.all( g, c(2.0, 2.9)), 

 

provides a second root (Figure 5) as d =  2.603288. 

Corresponding –ve roots are readily available by symmetry. 

 

Polyroot 

Also within R there is the polynom package
8
, with a function 

solve
9
 which is designed to reveal the complex roots of a 

polynomial. Here we enter the polynomial considered in this 

paper: 

g15(d) = d
8 

− 46 d
6 

+ 763 d
4 

− 5374 d
2  

+ 13585 

 

in the following format: 

 

polynomial(8:1) 

8 + 7*x + 6*x^2 + 5*x^3 + 4*x^4 + 3*x^5 + 2*x^6 + x^7  

> p <- as.polynomial(c(13585,0,-5374,0,763,0,-46,0,1)) 

> p13585 - 5374*x^2 + 763*x^4 - 46*x^6 + x^8  

> solve(p) 

 

                                                           
8 https://www.rdocumentation.org/packages/polynom/versions/1.4-0 

9 https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/solve 
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Both real and complex solutions are obtained as follows (c.f. Figure 5): 

(i) Real Solutions where g15(d) cuts the x axis: 

 

-2.909072                               -2.603288 

2.603288                                 2.909072, 

 

(ii) Complex solutions (Figure 7) where g15(d) minima lie above,  

and so does not cut, the x axis: 

 

z1 = 3.922411 - 0.072176i          z2 = 3.922411 + 0.072176i 

z3 = -3.922411 - 0.072176i        z4 = -3.922411 + 0.072176i.  

 
 

Figure 7 Complex roots (3.922411 ± 0.072176i, -3.922411 ± 0.072176i) 

shown on Real and Imaginary axes of an Argand diagrams to be compared 

with Figure 5 where minima do not cut the x axis and so complex or imaginary 

roots are formed. 

 

These solutions are complex (imaginary) rather that real, but will 

still solve the g15(d) = 0 polynomial, with the imaginary 

components becoming real upon squaring. 

 

Allroots( ) function in Maxima 

Maxima is a computer algebra system used for the manipulation 

of symbolic and numerical expressions. It yields high precision 
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numeric results and plots functions and data in two and three 

dimensions
10

. 

 

For solving again the polynomial: 

g15(d) = d
8 

− 46 d
6 

+ 763 d
4 

− 5374 d
2  

+ 13585, 

 

the format used is: 

 eqn: x^8-46*x^6+763*x^4-5374*x^2+13585; 

              8           6               4                2 

                x - 46 x + 763 x    - 5374 x  +  13585 

soln: allroots (eqn); 

 

giving the Real solutions (c.f. Figure 5): 

x = 2.603287754423185, x = - 2.603287754423191, 

x = - 2.909072186343945, x = 2.909072186343939. 

and the Complex solutions (c.f. Argand diagram, Figure 7): 

x = 0.07217649359882254 i + 3.92241066021693, 

x = 3.92241066021693 - 0.07217649359882254 i, 

x = 0.0721764935987751 i - 3.922410660216924, 

x = - 0.0721764935987751 i - 3.922410660216924. 

  

all of which satisfy g15(d). Thus, all 8 roots of the 8 degree 

polynomial are accounted for.  

 

Summary and conclusion 

A simple geometrical problem was shown to generate a degree 8 

polynomial function after firstly applying Pythagoras’ Theorem 

and then squaring the resulting equation to derive a more elegant 

polynomial equation. Real and complex solutions were found by 

root finding functions available in R packages together with other 

readily available software.  

 

                                                           
10 https://swmath.org/software/560 
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The polynomial has 4 real and 4 complex solutions as expected. 

Squaring introduces extraneous solutions and only one of the final 

8 solutions solves the Crossed Ladders problem. We notice that 

while the value d = ± 2.909072 satisfies equation (15), it does not 

satisfy equation (12), and so is not a solution to the original 

problem. There is, however, an interesting feature of this 

extraneous root: it is hidden away between 2.909070 where 

g15(d) is negative, and 2.909075 (Figure 6) where the function is 

positively making its existence virtually undetectable by plotting. 

To summarize, there was an extra effort in the simple project of 

casting equation (12) into an elegant form, and in finding and 

discarding a spurious root, but there were also some useful 

learnings involved. 
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Appendix – Code used 

 

library(rootSolve) 

#--------------------------------#  

uniroot 

#If equation (12) is described as f 

f <- function(d) { 1/sqrt(16 - d^2) + 1/sqrt(9 - d^2) -1 } 

# and the search interval is 0 -> 3 

uniroot(f,c(0,3)) $root  

# gives d = 2.603288 and for more information, enter: 

uniroot(f,c(0,3))  

# showing that the function value at the root is of the order of 1e-

07.  

# Thus: 

f(2.603288)  

# satisfies equation (12), as by symmetry so does (-2.603288) 

#--------------------------------#  

The two following commands produce a plot of f: 

curve(f, from = 0, to = 3) 

abline(h = 0, lty = 3)  

#--------------------------------#  

if equation (15) is described as g 

g <- function(d){ d^8 -46*d^6 + 763* d^4 -5374*d^2 + 

13585} 

# For uniroot, some experimentation with the search endpoints is 

needed to produce opposite signs bracketing a root. 

# Thus: 

uniroot(g,c(2.0, 2.9))$root  

# gives d = 2.603288 as before. 

#--------------------------------# 

 

Applying uniroot.all using a similar syntax to uniroot: 

uniroot.all(g, c(1, 3)) 

# gives (i) 2.603291 which is a slightly less accurate value than 

the previous 2.603288 because  
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abs(g(2.603291)) > abs(g(2.603288)) 

# and also (ii) 2.909072, which, however, does not satisfy the 

original eqn (12) since f(2.909072) is not zero or approximately 

so.  

# ----------------------------------------------------#  

Plotting the new root of (15) 

curve(g, from = 2.909070, to = 2.909075) 

abline(h = 0, lty = 3) 

# ----------------------------------------------------#  

In Mathematica, g is defined as follows: 

#  g[d_]: = d^8 -46*d^6 + 763* d^4 -5374*d^2 + 13585; 

# The syntax for finding a root(s) of a function g of d would be:  

 

# FindRoot[g, {d = s}] where 's' is some starting point. 

# real and complex roots come from the one command 

# --------------------------------------------------- 

 

# test the complex roots of g by substitution 

g(-3.92241 + 0.0721765i) 

g(-3.92241 - 0.0721765i) 

 

g(3.92241 + 0.0721765i) 

g(3.92241 - 0.0721765i) 

 

# all of which give 0 (approximately). 

 

Real & Complex solutions with Maxima 

eqn: x^8-46*x^6+763*x^4-5374*x^2+13585; 

8            6              4                2 

  x  - 46 x  +    763 x  -    5374 x  +   13585 

  

soln: allroots (eqn); 

x = 2.603287754423185, x = - 2.603287754423191, 

x = - 2.909072186343945, x = 2.909072186343939, 

x = 0.07217649359882254 i + 3.92241066021693, 
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x = 3.92241066021693 - 0.07217649359882254 i, 

x = 0.0721764935987751 i - 3.922410660216924, 

x = - 0.0721764935987751 i - 3.922410660216924 

 

The result from Maxima was: 

d = ±(−3.92241 ± 0.07217651i), 

d = ± 2.909072, ± 2.60329, 


