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Differentiability in normed spaces: A new approach 

 Raunu Gebo Sarsoruo  

 Abstract   

The notions of limit, continuity, linearity and bilinearity 

are very substantial in the study of the general theory of 

differentiability in normed spaces. These concepts are 

used to provide precise proofs of differentiability of some 

functions in normed spaces. Common properties of the 

derivative of a function at a particular point are identified 

and expounded. The paper aims to show a new approach 

using common abstractive ideas to develop a better 

understanding of differentiation. Foundational concepts 

from limits that relate to continuity, then to linearity and 

bilinearity in the form of definitions, theorems and 

lemmas including some of their proofs provide a better 

way of understanding differentiability in calculus. Another 

significant result explored is the differentiability and 

continuity of implicit functions in Banach Spaces.  
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Introduction 

Interestingly, prevalent philosophical concepts that indicate the 

existence of continuity when a function is differentiable, are 

proposed to be a better way of understanding differentiation for 

university students and lecturers of calculus classes. 

Differentiation is a key concept in the study of calculus as a 

foundation for mathematical analysis. The main notion described 

is the differentiability of a function at a specific point. It seems to 

hold true for almost all occurring results from certain definitions, 
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lemmas and the main theorems used. Each result seems to build 

upon the results from another theorem or lemma.  

 

To achieve the main idea of this paper, which is to show that 

differentiability of a function at a specific point implies the 

existence of a limit and continuity at that same point, we begin 

from the notion of limits. It is known that the limit of a function   

as   approaches a point     can be found simply by calculating 

the value of the function   at point  . The concept of continuity 

builds on this property where functions are said to be            

at  . If functions are continuous at  , then there exists a tangent 

line at that point. Such a line introduces the existence of a linear 

mapping at that point. If such a linear map exits at that point  , 

then we say that function   is differentiable at point   and satisfies 

the condition of differentiability stated as, 

   
   

           

 
        

 

                                               ity of implicit 

functions and some observations are made when an implicit 

function is defined over a Banach space. Implicit differentiation is 

one of the many different techniques of differentiation which is 

useful for university students studying calculus. 

 

Limit 

The concepts of linearity, continuity and differentiability evolve 

firstly from the notion of limits. Limits are the foundational basis 

for continuity, linearity and differentiability to occur in normed 

spaces. Hence, the existence of a limit of a function at a point 

underlies the study of the theory of differentiability in general. 

Sequences are used to achieve a better and more concise 

understanding of limits. 
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We fix real linear spaces     over the same field     and open 

set     (Baron, 2019). 

 

Definition 1  Function        given by       is called a 

         whose domain is a set of positive integers    

 

Example 1  Let       
 

 
. The sequence whose     term is 

 

 
 

may be written as 

   
 

 
    
     

 

 
 
 

 
 
 

 
 
 

 
   . 

 

Remark 1  Observe that by choosing   sufficiently large, we find 

terms that are very close to zero. On the other hand, regardless of 

how large   is chosen, there are terms further out in the sequence 

that are not close to zero. 

 

Example 2  Let        
         

 
    
                 . If we 

chose            , then             , but             , 

which is not close to zero. If on a measure of closeness, say 

within      of zero, it is clear that all terms of the sequence 

 
 

 
    
  beyond the      term satisfy this criterion. This idea leads 

to build the definition of convergence. 

 

Definition 2   Function        given by a sequence         
  

          to a real number   if and only if for every    , 

there exists a positive integer   such that for all     we have 

          

 

Remark 2  The choice of   depends on the choice of  . The 

sequence  
 

 
    
  converges to zero by intuition. If this conclusion 

is correct, then for    , there exists an   such that, for   

          
 

 
    

 

 
    



54 Sarsoruo, Differentiability in normed spaces: A new approach.  

 

 

Example 3  If       , then, for             
 

 
 

 

  
 

    . Thus, for             satisfies the conditions of 

definition 2. Now, we show that   
 

 
    
  converges to zero 

(Gaughan, 1993, P51).   

 Choose    .  

 Let   be an integer larger than 
 

 
.  

 If    , then we have 
 

 
 

 

 
  .  

 This means that if    
 

 
 and    , then for   

         
 

 
     

 Therefore, the sequence converges to zero. 

 

Definition 3  A sequence          is said to be            

iff there is a real number     such that        
  converges to  . 

If        
  is not convergent, it is said to be          . 

 

Remark 3  The unique number to which a sequence converges to 

is called the       of the sequence.  

 

Definition 4  Let   be an element of a real linear space  . A set 

    is called the              of point  , if there exists an 

open set     such that      . 

 

In other words, a set   is the neighbourhood of the point  , if 

      , where      means the interior of the set    

 

Definition 5  Let   be a subset of a real linear space  . A point 

    is called an                    of   if every 

neighbourhood of   contains at least one point of   different from 

  itself (Gaughan, 1993, P64). 
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Example 4  Given the set    
 

 
  where   is a positive integer. 

This set is the range of the sequence  
 

 
  
 . Example   shows that 

 
 

 
  
  converges to zero. Thus, every neighbourhood of   contains 

infinitely many terms of the sequence; and, since all terms of the 

sequence are distinct (that is, if    , then      ), every 

neighbourhood of   contains infinitely many points of the set  . 

Therefore,   is an accumulation point of the set  . 

 

Definition 6  Let       and    be an accumulation point of  . 

Then, function   has a limit   at    iff for each     there is a 

    such that for     if  

           

then  

           as illustrated in Figure 1. 

 

Definition 7  Let       be a function defined on some open 

interval that contains the number  , except possibly at   itself. 

Then, we say that the                                      , 

and we write it as 

   
   

       

if for every number     there exists a number     such that if 

          

then  

 

           as illustrated in Figure 1 (Gaughan, 1993, P65). 
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Figure  1: Illustration of     definition of limit (Gaughan, 1993, P65). 

 

Example 5 Let     and       given by 

     
    

   
 for          

    

   
    , 

hence   is a linear function and the graph of   is a line with slope 

 , except for      So, as   approaches  ,      approaches   

filling in every necessary gap as possible. Hence, the limit of   at 

    is      Let us prove that   has a limit     at     

using Figure    

 

Let us take     as we consider the geometric interpretation of 

the idea of a limit outlined below. 

 Choose a neighbourhood of   such that for   in this 

neighbourhood with    .  

 The corresponding points on the graph of   lie in the strip  

                  . 

 Ignoring the point    , the graph of   is a straight line 

of slope  .  

 Try     to obtain the neighbourhood           of 

   .  

 If            , then  
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Figure  2: Example of     definition of limit (Gaughan, 1993, P66.) 

 

Theorem 1   Let       be a function with    an accumulation 

point of    Then,   has a limit at point    if and only if for each 

sequence        
  converging to    with      and       for 

all  , the sequence          
  converges (Gaughan, 1993, P57).  

 

Continuity 

In the discussion of the limit of a function above, a function   has 

the property that if it has a limit at a point   , then it is said to be 

          at that point. Continuity in everyday language defines 

a process that takes place without interruption or abrupt change. 

Thus, a mathematical definition of continuity is closely related. 

Generally, we say that a function       is           at a 

number   if  

   
   

           

 

However, continuity can be defined more precisely using the 

definitions below that follows on from the notion of limits. 

 

Definition 8  Suppose     and        If      then   is 

          at    if and only if for each    , there exists a 

    such that if 
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then  

               as displayed in Figure    
 

 
Figure  3: Illustration of     definition of continuity (Gaughan, 1993, P86.) 

 

Remark 4  When comparing the definition     of continuity to the 

definition     of the limit of a function at point   , the following 

observations are made (Gaughan, 1993, P86).   

 For continuity at   , the number    must belong to  , but 

not an accumulation point of    

 If       with      and    not an accumulation point 

of  , then there is     such that if             , 

then       

 Hence                  for every      

 Now, we can say that if    is not an accumulation point of 

  and     , then   is continuous at    by default. 

 Consider the case when    is an accumulation point of  . 

Then,   has a limit at    and that limit is      . 

 Comparing Figure   to Figure  ,   is continuous at    if 

and only if for each    , there is a     such that the 

graph of   for             ,     lies in the 

strip                            



Electronic Journal of Informatics Vol. 3 December 2020                                               59 

 

Theorem 2  Let       with      and    an accumulation 

point of    Then the following conditions are equivalent 

(Gaughan, 1993, PP 87-88): 

 For every sequence at        
  converging to    with 

     for each             
  converges to        

   has a limit at    and        
            

   is continuous at   . 

 

Proof 

1. (i)   (ii)   

(a) Assume that     holds.  

(b) In particular, if        
  converges to    with       

and      for all  , then           
  converges to      .  

(c) Hence, by Theorem     has a limit at    and 

       
             

(d) Thus (i) implies (ii). 

 

2. (ii)   (iii).   

(a) Assume      holds, and choose       

(b) Since (ii) holds, there is a     such that if      

      for    , then                  

(c) If         , then          implies that        

(d) Hence,                    

(e) Thus,   is continuous at    and (ii) implies (iii). 

 

3. (iii)   (i).   

(a) Suppose now that (iii) holds and that        
  is a 

sequence of points in   that converges to   .  

(b) Choose    . There is a     such that for    

     , for    <                  

(c) Since        
  converges to   , there is   such that for 

                

(d) Thus, for                       
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(e) This shows that           
   converges to        

 

Definition 9  Let    be a sequence of numbers for       

Sequence      is a Cauchy sequence, if  

 
   

     
   

     
   

     
     

               (1) 

 

This means that by selecting any small positive real number  , a 

sufficiently large indicator   can be set such that any two 

expressions of higher orders are less than    

There are two equivalent definitions of real functions of a real 

variable. Let     and        

 

Definition of Cauchy   Function   is continuous in point      

if and only if: 

 
   

     
   

     
   

                             (2) 

 The conditions   

          means that   belongs to the open sphere in 

the middle    and radius  . 

                means that      belongs to the open 

sphere in the middle       and radius  . 

 

Definition of Heine   The function is continuous at point     , 

if and only if for each sequence      numbers from  , which is 

convergent to   , the string of values         converges to      , 

or 

 
      

                                    (2) 

 

If the function   meets one of the above conditions for every 

   , it is continuous on the set   respectively in the sense of 

Cauchy or the sense of Heine.  
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Linearity 

We fix linear spaces     over the same field         and a 

set   (Baron, 2019). 

 

Definition 10  A                       over the field   is called 

a set   with two binary operations defined as:   

 addition of vectors: operation from the Cartesian product 

of the set   on set  ,  

       , for vectors        , we have     

   

 scalar multiplication: operation from the Cartesian product 

of the set   and field  ,      , for vectors       

and number    , we have       

 

Definition 11  Let       be a mapping. We say that   is 

      , if the following properties are satisfied;   

                  for every elements,         

             for every     and    . 

                     for every       and for 

every         

                                 for every 

scalar        , elements         and every 

     

 Property                   is called the            and 

property              is called the             of mapping 

  respectively. 

 

Definition 12  Function         is called a norm in  , if for all 

     ,     the following properties hold:   
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If     is a norm on  , then the pair         is called 

            . 

 

Remark 5  If     is a norm in  , then for all       we have:   

            

        

                                 

            

 

Definition 13  Let   denote any non-empty set. A        on set 

  is called function               which for any elements 

        satisfy the conditions:   

               

                

                       

 

If   is a metric in set  , then the pair       is called 

            . Elements of set   are called         Number 

       is called the          of a point   from point  .  

 

Remark 6  If     is a norm on  , then function             

given by the formula              is a        on    

 

Definition 14  Normed space         is called              if 

the metric space       is         . 

 

Remark 7  The completeness of the metric means that each 

                of elements in space   is convergent to some 

element of space    

 

Differentiability in Normed Spaces 

Let us fix normed spaces     over the same field         and 

open set     (Baron, 2019). 



Electronic Journal of Informatics Vol. 3 December 2020                                               63 

 

Definition 15  Function       is called differentiable in point 

     if and only if when there exists such a continuous linear 

mapping        that  

   
   

                

   
    (3) 

 

Function       is called                if and only if, when 

it is differentiable in every point of set  . 

 

Remark 8  If function       is differentiable in point     , 

then there exists exactly                              

      satisfying condition    . The continuity in this mapping 

means that:  

 
   

     
   

     
   

              
              

   
           (5)  

 

 Assume that           are linear mappings and  

   
   

                 

   
    for          

       
       

   
        

                 

   
 

                 

   
      

 Take       

                            
       

   
       

 If       , then     
 

   
    and therefore  

       
  

   

 
  

   
 

    that is                 

            for      

       

 

Example 6 Show that if         , then function 

             defined by the formula:  

     ∫  
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is differentiable and  

        ∫  
 

 

               

for             . 

 

First, we check if the derivative of function      satisfies the 

notion of linearity and continuity. We fix  

           

and define the function  

             

by the formula  

   ∫  
 

 

              

             

     We fix elements              and     

 

           :  

        ∫  
 

 

                   

  ∫  
 

 

                            

    ∫  
 

 
               ∫  

 

 
                

   ∫  
 

 
                ∫  

 

 
               

            

 

           : 

       ∫  
 

 
                

   ∫  
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We know that,                      for             

        ∫  
 

 
                 

    ∫  
 

 
                  

    ∫  
 

 
                         

      ∫  
 

 
               ⏟            

                   

 

 

                      

    
   

                  

   
 

 ∫  
 
                 ∫  

 
              ∫  

 
             

   
 

  
 ∫  

 
                                        

   
 

  

 ∫  
 
                                                              

   
 

  
 ∫  

 
               

   
 

  
∫  

 
                         

   
 

  
    ∫  

 
 

        

   
    ∫  

 

 
              

(Baron, 2019). 

 

Definition 16  If function       is differentiable in point 

    , then one continuous linear mapping       satisfying 

condition     is called                          at point    and 

is denoted by the symbol        and so        is a 

                         of space   in space   and  
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Remark 9  The continuity in the mapping   means that;  

 
   

     
   

     
   

              
                     

   
 

     (4) 

 

The following observations can be made: 

 If       is a continuous linear mapping, then   is a 

differentiable function and  

        for      

 If       are normed spaces and           are 

continuous billinear mapping, then   is differentiable and 

                                   for 

                       

 Homogeneity in each variable is bilinear such that we 

have                                      

(Baron, 2019). 

 

Lemma 1  If    and    are normed spaces, then bilinear mapping 

          is continuous, if and only if, there exists such a 

constant        , that 

                    

for                

 

Remark 10  If a function       is differentiable in point 

    , then function        defined by the formula:  

     {

                       

      
            

             
              (7) 

 is continuous in point    (Baron, 2019). 

 

Theorem 3  A function that is differentiable at a point is 

continuous at that same point.  
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Proof 

 Assume that       is differentiable in point     . 

 Function       defined by formula     is continuous 

in point    and                             

        for      

        
           (Baron, 2019). 

 

Definition 17  Isom                is a one-to-one 

continuous linear mapping,        and     is a linear 

mapping.  

Definition 18  Let        denote all the family of linear and 

continuous operators in normed space   with respect to the values 

in normed space    

 

Definition 19  Function       is called a    class function if 

and only if,   is differentiable and             is continuous. 

 

Remark 11  Continuity in the mapping,            means 

that:  

  
    

     
   

     
   

     
   

                       

            (5) 

 

Differentiability of implicit functions in Banach Space 

We begin this section by expounding the concept of 

differentiability to functions that are impossible to differentiate 

directly. Observe that a function of the form        is simple 

to differentiate. However, when it is inconvenient to express 

functions of this form, we tend to use functions that are defined 

implicitly. For instance, consider the function  

          

 

This function is not expressed in the form of       , but it still 

defines   as a function of   since it can be rewritten as  
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 (Anton et al, 2012, P185). 

 

Example 7 Consider the function              . 

Applying implicit differentiation on function   with respect to   

results in; 

 
 

  
     

 

  
    

 

  
    

 

  
    

  
  

  
       

 
  

  
 

  

 
 

 

We fix Banach spaces       and open set       (Baron, 

2019). 

 

Theorem 4  If       is a    class function,         

                       and             then there exists 

a neighbourhood      of point     a neighbourhood      of 

point    and such a function        of    class function, that  

                  
         

                  

 

Identified from the result of theorem      the following 

observations can be made. 

 For all neighbourhoods of point            some 

function,          if and only if          

 The function        is a    class function which is 

differentiable and continuous as defined in definition 

    .  

 If            then  

                      

        
             

 

Example 8  If     are Banach spaces,       is an open set, 

          and           then for every available number 



Electronic Journal of Informatics Vol. 3 December 2020                                               69 

 

close/near    denoted by  , there exist a neighbourhood     of 

point    and such a function       of class     that       

  and            and                 for     (Baron, 

2019). 

 

Theorem 5  We assume that       is a    class function and 

                            If     is an open set and 

      is such a continuous function that  

 
   

                        

 

then   is a    class function and  

                                

for      

 

Example 9  If      is an open set,           is a    

class function,        and          then set  

      ∑  

 

   

                 

 

is a tangent plane to set          in point   (Baron, 2019). 

 

Conclusion 

Limit and continuity indeed provide a very fundamental approach 

to understanding differentiability in mathematical spaces. It is 

evident from the results of the definitions and theorems that 

differentiability of a function in a normed space heavily relies on 

the existence of a limit and continuity at a specific point. Hence, a 

function that is differentiable at a particular point implies that the 

function is continuous and has a limit at that same point. We also 

observe that a    class function defined implicitly over Banach 

spaces implies differentiability and continuity of some 

neighbourhood points. 
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Glossary 

  - A function that is differentiable and continuous. 

  - A space of real numbers. 

  - Natural numbers. 

      - Family of linear and continuous operators. 

 - a function. 

   - a differentiable function. 

     - a mapping. 

    - an open subset. 
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