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Abstract 

Randomness is a phenomenon that is mathematically 

studied in probability theory. Random quantities obtained 

have to be distributed over some graphs for interpretation. 

Mean is a descriptive quantity in statistics and is studied 

well using the convexity theory in pure mathematics. The 

paper shows the basic relationship of probability to 

random variables followed with convex function. Merging 

probability and convexity notions, we obtain sufficient 

conditions in the Ohlin lemma for stochastic convex 

orderings. The main results of the paper show 

formulations of two theorems using the Ohlin lemma in 

their proofs. 
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Introduction 

Certain problems can be solved mathematically by translating a 

particular problem into its mathematical model. Developing a 

mathematical model requires knowledge of mathematical 

theories. The main purpose of this research paper is to show a 

process of establishing elementary mathematical definitions, 

theorems and intertwining them to produce complex useful 

lemmas or theorems. Here, the Ohlin lemma is an example of this 

process and it is derived from combining continuous random 

variables and convex functions. The Ohlin lemma is used as a tool 

to prove two useful theorems of Hermite-Hadamanrd and Jensen 

functional inequalities (Rajba, 2014). We begin the paper by 
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stating the relationship of probability to random variables and 

then to its expected or mean value. Following a definition of a 

convex function and then intertwining it with continuous random 

variables, we obtain the Ohlin lemma with its sufficient 

conditions for stochastics convex ordering. The conditions of the 

Ohlin lemma are used to show simple proofs of Hermite-

Hadamand and the general case of finite Jensen functional 

inequalities in the application part of the paper. 

  

Probability and random variables 

The purpose of probability theory is to model random 

experiments so that we can draw inferences about them (Rosen, 

2012). An experiment is a procedure that yields one of a given set 

of possible outcomes. The sample space of the experiment is the 

set of possible outcomes. An event is a subset of the sample 

space. Laplace’s definition of the probability of an event with 

finitely many possible outcomes will now be stated. 

 

Definition 1 If S is a finite nonempty sample space of equally 

likely outcomes, and E is an event, that is, a subset of S, then the 

probability of E is      
   

   
. 

 

According to Laplace’s definition, the probability of an event is 

between 0 and 1. Note that if E is an event from a finite sample 

space S, then          . Thus,  

       
   

   
  . 

 

Many problems are concerned with the numerical value 

associated with the outcome of an experiment. For instance, we 

may be interested in the total number of one bits in a randomly 

generated string of 10 bits or in the number of times a tail comes 

up when a coin is flipped 15 times. To study problems of this type 

we introduce the concept of a random variable. 
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Definition 2 Let S be a sample space and a function X: S → X(S) 

is said to be a random variable where       . 

 

From Definition 2, notice that a random variable is a function 

which assigns each possible outcome in the sample space to a real 

number. Example 1 gives an illustration of an application of 

definition 2. 

 

Example 1 A fair coin is flipped 3 times. Let S be the sample 

space of 8 possible outcomes, and let X be a random variable that 

assigns to an outcome the number of heads in this outcome. 

 

Random variable X is a function X: S → X(S) where X(S) = {0, 

1, 2, 3} is the range which is the number of heads and  

S={(TTT), (TTH), (THH), (HTT), (HHT), (HHH), (THT) 

,(HTH)} 

X(HHH) = 3, 

X(HHT ) = X(HTH ) = X(THH ) = 2, 

X(TTH ) = X(THT ) = X(HTT ) = 1, 

X(TTT ) = 0. 

 

Combining Definitions 1 and 2, we arrive at the notion of the 

probability distribution of the random variable X forming 

Definition 3. 

 

Definition 3 The probability distribution of a random variable X 

on a sample space S is the set of pairs (r, p(X = r)) for all     

X(S), where p(X = r) is the probability that X takes the value r.  

The set of pairs in this distribution is determined by the 

probabilities p(X = r) for    X(S). The probability distribution of 

random variable X from Example 1 is given by p(X=3) = 1/8, 

p(X=2) = 3/8, p(X=1) = 3/8, p(X=0) = 1/8. 
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A random variable X can be either discrete or continuous. A 

random variable X is discrete if it has a finite or countable 

number of possible outcomes that can be listed as in Example 1. 

A random variable X is continuous if it has an uncountable 

number of possible outcomes, represented by the intervals. This 

research concerns continuous random variables so we introduce 

the following definitions. 

Definition 4 Let X be a continuous random variable. Then a 

probability distribution or probability density function (pdf) of X 

is a function f (x) such that for any two numbers a and b, 

           ∫        
 

 

 

Definition 5 Let F(b) be the cumulative distribution function, for 

a continuous random variable X that is defined for every number 

      by 

             ∫        
 

  

 

We now define the average or the mean of the continuous random 

variables, which is called expectation, denoted E(X) that will be 

used in the study. 

Definition 6 The expected or mean value of a continuous random 

variable X with pdf  f (x) is 

     ∫         
 

  

 

 

Generally, the expectations of the continuous random variable X 

can be represented and analyzed mathematically using convex 

functions. 
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Convex function 

At the core of the notion of convexity is the comparison of means 

(Niculescu & Persson, 2006). In this research, we look at the 

expectations of continuous random variables in convex functions. 

A convex function is defined as follows.  

 

Definition 7 Let J   R be an open interval. The function f: J → R 

is said to be convex if 

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)                           (1) 

for all x, y   J and λ   [0,1]. 

 

It is said to be strictly convex if the inequality (1) holds strictly 

whenever x and y are distinct points and λ   (0,1).  

 

Definition 8 Let J   R be an open interval. A function f: J → R is 

said to be Jensen convex if and only if it satisfies the Jensen 

functional inequality 

                                         (2) 

for all x, y   J. 

 

If the inequality in (2) for x  y is sharp then f is said to be strictly 

Jensen convex. 

 

Theorem 1 Let J   R be an open interval, and let f : J → R be a 

given convex function. The function f satisfies (2) and is 

continuous if and only if it satisfies inequality (1) for all x, y   J 

and every λ   [0,1]. 

 

The proof to theorem 1 is omitted, as it will not be used in this 

paper. 

 

Ohlin lemma 

Definitions 1 to 8 and Theorem 1 give, the mathematical bases to 

formulate the Ohlin lemma (Ohlin, 1969) which provides 
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sufficient condition for stochastic convex ordering (5) in lemma 

1. 

Lemma 1 Let X and Y be two continuous random variables with 

finite expectations such that 

E(X) = E(Y ).                    (3) 

 

If their cumulative distribution functions FX  and FY cross exactly 

one time, i.e., for there exist a point t0 such that 

FX(t) ≤ FY (t) if t < t0 and FX(t) ≥ FY (t) if t > t0                     (4) 

then 

Ef(X) ≤ Ef(Y )                                        (5) 

for all convex functions f : R → R. 

 

The proof to lemma 1 is omitted because it involves theorems and 

other mathematical theories, which are not included in this paper 

and are not relevant in the context of this research.  

 

Applications 

The Ohlin lemma or lemma 1 is used as a tool, which is applied to 

the proof of the following theorems mainly used in convex 

stochastic convex ordering to compare the Means of the 

probability distributions of continuous variables. Firstly, the Ohlin 

lemma is used to give a simple proof of the Hermite-Hadamard 

inequality. This inequality gives us an estimate of the integral 

mean value of a continuous convex function (Rajba, 2014). 

Secondly, we introduce the general finite case of Jensen 

inequality and use the Ohlin lemma to prove it. The Jensen 

inequality in its simplest form states that the convex 

transformation of a mean is less than or equal to the mean applied 

after convex transformation (Kuzma, 1985). We formulate two 

theorems and apply conditions of Ohlin lemma to prove them. 

 

Theorem 2 Let J   R be an open interval, and f : J → R be a 

convex function with a,b   J, a < b then 
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. (6) 

 

Proof We will prove the double inequality (6) by expanding 

conditions (3), (4) and (5) of the Ohlin lemma. Take a,b   J and a 

< b. Let X, Y, Z be three continuous random variables with 

measures µX = δ(a+b)/2, µY  which is equally distributed in [a,b] and 

, respectively. 

 

1. We calculate the expectations of the three continuous random 

variables are X, Y and Z as follow: 

; 

; 

. 

 

From the calculations, we have shown that the expectations are 

equal with 

 
and we have satisfied condition (3). 

 

2. Observe that the cumulative distributive functions are given 

by: 

, 

and 

 
and also 
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Using the above calculated cumulative distributions functions 

FX(t), FY (t) and FZ(t) we may write the following. For cumulative 

distributions functions 

FX(t) and FY (t) at point  we have 

, 

and 

. 

 

Furthermore for cumulative distributions functions FY (t) and FZ(t) 

at point  we get 

 

 

and 

 

 

From the above observations, we have shown that (4) is satisfied. 

 

3. Since (3) and (4) are fulfilled, we know from the Ohlin lemma 

that (5) is satisfied. Using (5) we will obtain (6). Observe that for 

convex orderings Ef(X) ≤ Ef(Y ) ≤ Ef(Z) we have 

 
This completes the proof of the double Hermite-Hadamard 

inequality.  
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General finite case of Jensen inequality 

Theorem 3 is the general finite case of Jensen inequality that is 

derived from definition 8. This theorem replaces variables a,b    J  

with finite variables x1,x2,...,xn   J. We state the theorem and show 

the proof of it satisfies the conditions (3), (4) and (5) of the Ohlin 

lemma. 

 

Theorem 3 Let J   R be an open interval. If a function f: J → R is 

convex, then it satisfies Jensen’s functional inequality 

          (7) 

 

for all x1,x2,...,xn   J, x1 < x2 < ... < xn and n   N. 

 

Proof We will prove (7) with help of the Ohlin lemma by 

verifying conditions (3), (4) and (5). Consider x1, x2,..., xn   J such 

that x1 < x2 < ... < xn. Let X and Y be two continuous random 

variables with measures µX = δ(x1+x2+...+xn)/n and 

, respectively. 

 

1. We calculate the expected values of condition (3) for all t   R 

as follows: 

 

; 

 

From the calculations, we have shown that the expected values 

are equal with 

. 

 

2. We want to prove (4), the cumulative distributive functions 

are given by: 
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We have satisfied (4) as claimed. 

 

3. Since (3) and (4) are fulfilled above, then we can use (5) to 

obtain (7). We write 

 

 

 

Hence we have arrived at (7) and so we have proved that for 

convex ordering Ef(X) ≤ Ef(Y ). 

 

All conditions (3), (4) and (5) are fulfilled. Thus, this completes 

the proof to (7). 
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Conclusion 

In this paper, we observed a fundamental process of establishing 

elementary knowledge of mathematics, which can be used to 

derive complex lemmas like the Ohlin lemma. We further 

observed the application of the Ohlin lemma in the proofs to 

Theorems 2 and 3 which are the Hermite-Hadamard and the finite 

case of Jensen functional inequalities. These two theorems are 

applied to solve problems in areas such as optimization, finance, 

economics, and operation research where random continuous 

variables are involved. Having such proved theorems, we can 

utilize them to model and study the means of the probability 

distribution functions.  
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