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Abstract 

A simple Monte Carlo simulation, using functions from 

various R packages is explored for calculating π using a 

variety of polygons to circumscribe a unit circle. 

Starting with a square, higher-order polygons, starting 

with the hexagon where the ratio of the circle area to the 

enclosing area to 90.68%, are explored for improved 

results. From there the number of sides, n, of the 

circumscribing polygon is progressively increased. The 

standard error of the estimate is reduced as the number 

of polygon sides is increased. One of several possible 

variance reduction methods is discussed. 

 

Keywords: Barycentric Coordinates, Hit or Miss, R, Random 

variables, Simple Monte Carlo. 

 

Introduction 

The value of the transcendental constant π is known to at least 

31 trillion decimal places, but even so, interest in finding just 

the first few digits of the constant using simple processes, has 

grown over the years; much fostered by internet usage. Figure 

1(a) is central to a common Monte Carlo (MC) simulation, 

where computer-generated random numbers, represented by 

dots in a square, are classified as to whether they also fall 

within an enclosed circle. The logic is as follows (Anderson, 

2020). If it is assumed that the points are totally random, then: 

 

. (1) 

That is 
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.      (2) 

From the simulation standpoint, the left and right sides of 

equation (2) provide two different estimators for the value of , 

and so, π itself. 

 

The estimators 

Figure 1(b) shows a set of X-Y axes set up on the circle/square 

surface. Any point of the square with coordinates (x, y) will be 

some distance d from the centre where d =√     . 

 
 (a) Circle.  (b) Quadrant. 

Figure 1: Random points. 

 

A point (x, y) lies inside the circle if d = 
 √      ≤ 1. Points 

are either inside or not inside - a “Hit or Miss” (HM) scenario. 

Simulating d is equivalent to simulating a Bernoulli random 

variable with probability 
 

 
 ascertained from the right side of 

equation (2). Thus, naming the estimator as θHM   gives: 

 

 .                      (3) 

  

 is an unbiased estimator of 
 

 
 with Bernoulli variance 

  
 

 
    

 

 
  and where N the number of trials. 
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Returning to Figure 1(b) and the RHS of equation (2), the ratio 

of areas “inside” where random points fall, to the unit area of 

the quadrant, is just 
 

 
. Standard calculus can find 

 

 
 from 

       (4) 

and since for points on the quadrant arc, x
2 

+ y
2 

= 1, this 

becomes
i
 

     (5) 

 

This simulation estimator θ
ˆ
I is actually a special case of a 

general form: 

     with a = 0, b = 1. 

 

The general integral is approximated by averaging N samples of 

some function f at uniform random points within an interval. 

With a set of N uniform random variables Xi ε (a,b), and with 

pdf 
 

     
 , the Monte Carlo estimator is: 

 

   ̂       ∑      
 
   . 

 

Therefore, there are two different estimators: 

 

 1 and (ii) θ
ˆ
I = √    . 

 

The variance of θ
ˆ
I will always be less than the variance of . 

Intuitively, this must be so, because (ii) involves the simulation 

of only one random variable, as opposed to two; and the 

intuition is easily confirmed algebraically. Interestingly, the 

latter is derived from the former by the conditioning of x on y. 

Most of what follows in this article will prefer the estimator θ
ˆ
I. 
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Alternative circumscribing polygons 

In connection with the circle-in-the-square-problem, not a lot 

appears to have been written for the cases when the circle 

becomes circumscribed by some other figure, e.g. a polygon 

(although the original arithmetic way of Archimedes used just 

this technique). Is it the case that the spread of the variance of 

the simulations might be reduced by adopting a different basic 

arrangement e.g. instead of the circle being enclosed in a 

square, where it occupies 75.8 percent of the bounding area, 

would better results be obtained if the circle were enclosed by a 

higher-order polygon?  

 

Table 1: Circle area as % of Polygon 

Polygon Square Pentagon Hexagon Octagon 

% occupied 78.5 86.4 90.68 94.8 

 

Table 1 shows the ratios of some possible figure areas. So, for 

example, a circumscribed hexagon would bring the ratio of the 

circle area to the enclosing area to 90.68 percent. This is then a 

good point to begin a general discussion through the example of 

a hexagon, moving to the case of more general figures later (it 

was also a waypoint for Archimedes’ arithmetrical/geometrical 

estimation of the upper limit on the value of π). 

 

Figure 2 shows: (a) a regular hexagon enclosing a circle of unit 

radius, and (b) one of six triangles comprising the hexagon, and 

a sector of the circle enclosed. As previously, the centre of the 

circle is (0,0), with radius 1. 

 
(a) Hexagon, Circle  (b) Triangle in Hexagon 

Figure 2: Circle and Hexagon 

O 

P Q 
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The HM estimator 

In the case of the circumscribing hexagon (Figure 2), the 

triangle shown consists of a tangent and two circle radii 

extended. Its area includes the circle sector. What is now 

required is to simulate a set of N random numbers which cover 

the triangle and ascertain the number n of those numbers also 

falling within the sector of the circle. Unfortunately, generating 

random points within a triangular area is more involved than 

producing random points within a quadrant, which is the 

appropriate simulation technique for Figure 1(b).  

 

In the case of the quadrant, N random points are generated by R 

commands such as x = runif (N, 0, 1) and y = runif (N, 0, 1), 

along the X and Y axes respectively, and uniformly cover the 

2D square area. It turns out that an arbitrary triangular area is 

not covered uniformly by similar commands. Observe N = 2000 

random points of a triangle in Figure 3 below, one of which was 

affected by the above method, the other by the correct method 

(see the programs tri.non uniform.R and tri.uniform.R in the 

Appendix for the generation of the two triangles)  

 
 (a) Non-Uniform. (b) Uniform. 

Figure 3: Non-Uniform/Uniform points. 

 

It can be seen that (b) is the way to achieve a pattern of points 

where there are no obvious gaps in coverage. In fact, (b) relies 

on a system of barycentric coordinates (Burkhardt, 2014). To 

use this more complicated procedure is essential since the 

whole validity of Monte Carlo simulation is posited on random 

points being uniformly distributed. 
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Barycentric coordinates 

Let the vertices of a general triangle be A, B, C, each with 

Cartesian vector coordinates (x, y). Let r and s be random 

numbers where 0 < r < 1 and 0 < s < 1. The following 

intermediate quantities are needed for the coordinates of points 

P(x, y) lying within the triangle: ea = 1.0 − √ , eb = (1.0 − r) ∗ 

√ , ec = r ∗ √  . 

 

Then, the barycentric coordinates P are: 

  P = ea ∗ A + eb ∗ B + ec ∗ C.   (6) 

 

The inverted triangle (figure 4) has a vertex angle at point O, 

which is 
 

 
 radians, so the semi-vertex angle is 

 

  
. Thus, the 

length of the tangent side of the triangle is 2tan(
 

  
), and the set 

of triangle(x, y) coordinates to be transformed into barycentric 

coordinates is therefore:  

(  1). 

 

Fortunately, R incorporates a package ‘uniformly’ which 

generates uniform distributions for different geometric shapes. 

For a triangle, if given the Cartesian vertices’ coordinates, it 

implements the above transformations and generates a vector of 

N random variates of points. The tabulation below shows 

estimates of pi and the standard error of estimates for different 

values of N, from 50 replications of the program polyHM.R 

(see code in the Appendix). 

 

Table 2: Estimator HM 

Hexagon   

N pi s.e. 

1000 3.133 0.03 

10000 3.142 0.009 

100000 3.141 0.003 

500000 3.1417 0.0014 
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But as it is the estimator with the higher variance, the topic of 

the  estimator will not be pursued, the other estimator being 

preferred. 

 
 

The I estimator 

A circumscribing Hexagon (Figures 4 & 5) provides a good 

illustrative starting point for the I estimator. It shows integration 

for the sector of the arc RS of y = √     . The area includes 

the 2 triangles AOR and BOS; these need to be deducted later 

for the final result. The advantage is that, from the shape of the 

figure, barycentric coordinates are not needed.  

 

 
Figure 5: Sector of Hexagon 

 

O 

P Q 

Figure 4: Hexagon and circle 

O A B 

R S 
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As with the previous .R program, polyI.R is general, based on 

the angle of the sector which will always be 
   

 
, where n is the 

number of polygon sides. The base angles of the triangles will 

be (0.5)*(pi - 
   

 
) and the ± cos of this angle gives the 

integration limits a and b. The total area of the two triangles 

(0.5)*sin(1 - 
   

 
). The program polyI.R employs simulation to 

estimate the sector area ORS, returning an estimate of pi, and 

the standard error of that estimate. As previously, one argument 

(n) of polyI(n, N) is the number of sides of the circumscribing 

polygon.  

 

The following lines of R code will average the results of 50 

runs: 

estims <− replicate (50 , expr = polyI (n, N))  

  colMeans(t( estims ) ) 

# n = 4 ,5 ,6 ,8 , with N the number of simulations . 

 

Table 3: A typical set of results for polyI 

Standar

d Errors 

    

N n = 4 n = 5 n = 6 n = 8 

1000 0.015 0.010 0.0075 0.0043 

10000 0.0048 0.003 0.0023 0.0013 

100000 0.0015 0.0010 0.00075 0.00043 

500000 0.0006 0.0004 0.00033 0.00019 

A typical set of results is shown in Table 3. Clearly, the 

standard error of the estimate is reduced as the number of 

polygon sides is increased, which accords with the theoretic 

probability density considerations (Ebert, 2020). 

 

More decimal places 

Even for the best of the results, viz: the octagon with N = 

500000, with a standard error of the order of 0.00019, the pi 

estimate is certain only to 3 decimal places. Better is possible. 
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One variance reduction strategy which is applicable is that of a 

control variate. A suitable function for the pi estimates above is 

f(x) = x
2
; the mean value of x

2 
in (a, b) is known. It is:  

 
 

The program polyIcv.R adds this control variate to polyI.R. 

Table 4 shows the pi estimates and standard error for 50 runs of 

polyIcv.R for the case of the Octagon, using the following lines 

of code: 

estims <− replicate (50 , expr = polyIcv (8 , N))  

colMeans(t( estims )) 

 

Table 4: pi estimates and standard error for 50 runs of polyIcv.R 

Octagon   

N piˆ s.e. 

1000 3.14158 0.000046 

10000 3.14159 0.000013 

100000 3.1415928 0.000004 

500000 3.1415928 0.000002 

 

The last result with standard error of the order of 10
−6 

is quite a 

satisfactory one, obtained by restricting the number of 

simulations and there exists the potential for other forms of 

variance reduction, but that extension will not be continued 

here. 

 

Summary and conclusion 

A simple Monte Carlo simulation, using functions from various 

R packages, was used to achieve reasonable estimates of the 

early digits of π using a variety of polygons to circumscribe a 

unit circle. Polygons were segmented into triangles and 

barycentric coordinates were used to provide a uniform 

distribution of points within the triangles from the Monte Carlo 

simulation tool. The number of polygon sides were increased 



Electronic Journal of Informatics Vol. 3 December 2020                                               93 

 

thereby increasing the ratio of the circle area to the enclosing 

figure and leading to closer approximations to pi. The standard 

error of the estimate was reduced as the number of polygon 

sides increased. One of several possible variance reduction 

methods was discussed. 
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Appendix 

# tri . non−uniform 

#−−−−−−− 

# non−uniformly distributednumbers over # the triangle (0 ,2) , 

(0 ,0) , (2 ,1)  

N <− 2000  

x <− 2∗runif (N);  

y <− (x/2)∗ runif (N);  

rnums <− matrix(c(x , y) , nrow = N);  

plot .new() plot(rnums , xlim = c(0 ,2) , ylim = c(0 ,1) , pch = ’∗ 

’ , col = ”blue” , xlab = ’x ’ , ylab = ’y ’ ) 

#—— 

# tri . uniform 

#−−−− 

# uniformly distributed numbers over # the triangle (0,2), (0,0), 

(2,1) 

 

library ( uniformly )  

N <− 2000 tri . uniform <− runif in triangle (N, c(0,0) ,c(2,0) 

,c(2,1))  

plot .new() plot( tri . uniform , xlim = c(0,2) , ylim = c(0,1) , 

pch = ’∗ ’ , col = ”blue” , xlab = ’x ’ , ylab =’y ’ ) 

 

#−−−− 

# polyHM 

#−−−−  

 

library ( uniformly ) 

polyHM <− function (n, N){ g <− function(u, v){uˆ2 + vˆ2}  

tp <− tan( pi/n) 

rit <− runif _in_triangle (N, c(−tp ,1) , c(0 ,0) ,c(tp ,1)) 

x <− rit [ ,1]; y <− rit [ ,2]; p <− g(x , y)  

inside <− p[p <= 1]; num <−length( inside ) 

pd <− (n∗tan( pi/n )); Ex  val <− (num/N);  

pi est <− Ex_val∗pd; se <− pd∗sd( inside )/sqrt(N)  
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return(c( piest , se )) } # end function 

# example 

estims <− replicate (50, expr= polyHM(6,1000))  

colMeans(t( estims ) ) 

 

#−−−−−−− 

# polyI 

#−−−−−−−  

polyI <− function(n, N){ 

g <− function(u){sqrt(1 − uˆ2)}  

x <− cos ((0.5)∗( pi − 2∗pi/n))  

b <− x ; a <− − x ; Y <− runif (N, a , b)  

tri . area <− 0.5∗sin ((n − 2)∗pi/n)  

estim <− n∗((g(Y))∗(b−a) − tri . area ) 

me <− mean( estim ); se <− sd( estim )/sqrt(N) 

return(c(me, se ))} # end function 

# example estims <− replicate (50 , expr = polyI (6 , 500000)) 

colMeans(t( estims ) ) 

#−−−−−− 

# polyIcv 

#−−−−−− 

polyIcv <− function(n,N){ options( digits = 8)  

g <− function(u){sqrt(1 − uˆ2)} x <− cos ((0.5)∗( pi − 2∗pi/n)) 

a <− − x ; b <− x ; Y <− runif (N, a , b ); 

 

#− control variate Z−  

Z <− Yˆ2;  

cv <− function(w){wˆ3/3} # the mean for xˆ2 

Zm <− (1/(b − a))∗(cv(b) − cv(a) ) 

#−−−−−− 

# simulated mean of Y Yms <− mean(Y); tri . area <− 0.5∗sin 

((n − 2)∗pi/n) 

#−−−−−− 

X <− g(Y); Xms <− mean(X)  

c <− −sum ((X − Xms)∗(Z − Zm))/sum((Z − Zm)ˆ2)  
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tmp <− (b −a)∗(X + c ∗(Z − Zm)) 

estim <− n∗(tmp − tri . area ) 

me <− mean( estim ); se <− sd( estim )/sqrt(N) 

return(c(me, se )) }# end function 

# example estims <− replicate (50 , expr = polyIcv (8 , 

500000)) colMeans(t( estims ) ) 

# 

                                                           

 


