
84 King & Anderson, Monte Carlo simulations to estimate Pi

Monte Carlo simulations to estimate Pi

Rik King

Peter Anderson

Abstract

A simple Monte Carlo simulation, using functions from

various R packages is explored for calculating π using a

variety of polygons to circumscribe a unit circle.

Starting with a square, higher-order polygons, starting

with the hexagon where the ratio of the circle area to the

enclosing area to 90.68%, are explored for improved

results. From there the number of sides, n, of the

circumscribing polygon is progressively increased. The

standard error of the estimate is reduced as the number

of polygon sides is increased. One of several possible

variance reduction methods is discussed.

Keywords: Barycentric Coordinates, Hit or Miss, R, Random

variables, Simple Monte Carlo.

Introduction

The value of the transcendental constant π is known to at least

31 trillion decimal places, but even so, interest in finding just

the first few digits of the constant using simple processes, has

grown over the years; much fostered by internet usage. Figure

1(a) is central to a common Monte Carlo (MC) simulation,

where computer-generated random numbers, represented by

dots in a square, are classified as to whether they also fall

within an enclosed circle. The logic is as follows (Anderson,

2020). If it is assumed that the points are totally random, then:

. (1)

That is

Electronic Journal of Informatics Vol. 3 December 2020 85

. (2)

From the simulation standpoint, the left and right sides of

equation (2) provide two different estimators for the value of ,

and so, π itself.

The estimators

Figure 1(b) shows a set of X-Y axes set up on the circle/square

surface. Any point of the square with coordinates (x, y) will be

some distance d from the centre where d =√ .

 (a) Circle. (b) Quadrant.

Figure 1: Random points.

A point (x, y) lies inside the circle if d =
 √ ≤ 1. Points

are either inside or not inside - a “Hit or Miss” (HM) scenario.

Simulating d is equivalent to simulating a Bernoulli random

variable with probability

 ascertained from the right side of

equation (2). Thus, naming the estimator as θHM gives:

 . (3)

 is an unbiased estimator of

 with Bernoulli variance

 and where N the number of trials.

86 King & Anderson, Monte Carlo simulations to estimate Pi

Returning to Figure 1(b) and the RHS of equation (2), the ratio

of areas “inside” where random points fall, to the unit area of

the quadrant, is just

. Standard calculus can find

 from

 (4)

and since for points on the quadrant arc, x
2

+ y
2

= 1, this

becomes
i

 (5)

This simulation estimator θ
ˆ
I is actually a special case of a

general form:

 with a = 0, b = 1.

The general integral is approximated by averaging N samples of

some function f at uniform random points within an interval.

With a set of N uniform random variables Xi ε (a,b), and with

pdf

 , the Monte Carlo estimator is:

 ̂ ∑

 .

Therefore, there are two different estimators:

 1 and (ii) θ
ˆ
I = √ .

The variance of θ
ˆ
I will always be less than the variance of .

Intuitively, this must be so, because (ii) involves the simulation

of only one random variable, as opposed to two; and the

intuition is easily confirmed algebraically. Interestingly, the

latter is derived from the former by the conditioning of x on y.

Most of what follows in this article will prefer the estimator θ
ˆ
I.

Electronic Journal of Informatics Vol. 3 December 2020 87

Alternative circumscribing polygons

In connection with the circle-in-the-square-problem, not a lot

appears to have been written for the cases when the circle

becomes circumscribed by some other figure, e.g. a polygon

(although the original arithmetic way of Archimedes used just

this technique). Is it the case that the spread of the variance of

the simulations might be reduced by adopting a different basic

arrangement e.g. instead of the circle being enclosed in a

square, where it occupies 75.8 percent of the bounding area,

would better results be obtained if the circle were enclosed by a

higher-order polygon?

Table 1: Circle area as % of Polygon

Polygon Square Pentagon Hexagon Octagon

% occupied 78.5 86.4 90.68 94.8

Table 1 shows the ratios of some possible figure areas. So, for

example, a circumscribed hexagon would bring the ratio of the

circle area to the enclosing area to 90.68 percent. This is then a

good point to begin a general discussion through the example of

a hexagon, moving to the case of more general figures later (it

was also a waypoint for Archimedes’ arithmetrical/geometrical

estimation of the upper limit on the value of π).

Figure 2 shows: (a) a regular hexagon enclosing a circle of unit

radius, and (b) one of six triangles comprising the hexagon, and

a sector of the circle enclosed. As previously, the centre of the

circle is (0,0), with radius 1.

(a) Hexagon, Circle (b) Triangle in Hexagon

Figure 2: Circle and Hexagon

O

P Q

88 King & Anderson, Monte Carlo simulations to estimate Pi

The HM estimator

In the case of the circumscribing hexagon (Figure 2), the

triangle shown consists of a tangent and two circle radii

extended. Its area includes the circle sector. What is now

required is to simulate a set of N random numbers which cover

the triangle and ascertain the number n of those numbers also

falling within the sector of the circle. Unfortunately, generating

random points within a triangular area is more involved than

producing random points within a quadrant, which is the

appropriate simulation technique for Figure 1(b).

In the case of the quadrant, N random points are generated by R

commands such as x = runif (N, 0, 1) and y = runif (N, 0, 1),

along the X and Y axes respectively, and uniformly cover the

2D square area. It turns out that an arbitrary triangular area is

not covered uniformly by similar commands. Observe N = 2000

random points of a triangle in Figure 3 below, one of which was

affected by the above method, the other by the correct method

(see the programs tri.non uniform.R and tri.uniform.R in the

Appendix for the generation of the two triangles)

 (a) Non-Uniform. (b) Uniform.

Figure 3: Non-Uniform/Uniform points.

It can be seen that (b) is the way to achieve a pattern of points

where there are no obvious gaps in coverage. In fact, (b) relies

on a system of barycentric coordinates (Burkhardt, 2014). To

use this more complicated procedure is essential since the

whole validity of Monte Carlo simulation is posited on random

points being uniformly distributed.

Electronic Journal of Informatics Vol. 3 December 2020 89

Barycentric coordinates

Let the vertices of a general triangle be A, B, C, each with

Cartesian vector coordinates (x, y). Let r and s be random

numbers where 0 < r < 1 and 0 < s < 1. The following

intermediate quantities are needed for the coordinates of points

P(x, y) lying within the triangle: ea = 1.0 − √ , eb = (1.0 − r) ∗

√ , ec = r ∗ √ .

Then, the barycentric coordinates P are:

 P = ea ∗ A + eb ∗ B + ec ∗ C. (6)

The inverted triangle (figure 4) has a vertex angle at point O,

which is

 radians, so the semi-vertex angle is

. Thus, the

length of the tangent side of the triangle is 2tan(

), and the set

of triangle(x, y) coordinates to be transformed into barycentric

coordinates is therefore:

(1).

Fortunately, R incorporates a package ‘uniformly’ which

generates uniform distributions for different geometric shapes.

For a triangle, if given the Cartesian vertices’ coordinates, it

implements the above transformations and generates a vector of

N random variates of points. The tabulation below shows

estimates of pi and the standard error of estimates for different

values of N, from 50 replications of the program polyHM.R

(see code in the Appendix).

Table 2: Estimator HM

Hexagon

N pi s.e.

1000 3.133 0.03

10000 3.142 0.009

100000 3.141 0.003

500000 3.1417 0.0014

90 King & Anderson, Monte Carlo simulations to estimate Pi

But as it is the estimator with the higher variance, the topic of

the estimator will not be pursued, the other estimator being

preferred.

The I estimator

A circumscribing Hexagon (Figures 4 & 5) provides a good

illustrative starting point for the I estimator. It shows integration

for the sector of the arc RS of y = √ . The area includes

the 2 triangles AOR and BOS; these need to be deducted later

for the final result. The advantage is that, from the shape of the

figure, barycentric coordinates are not needed.

Figure 5: Sector of Hexagon

O

P Q

Figure 4: Hexagon and circle

O A B

R S

Electronic Journal of Informatics Vol. 3 December 2020 91

As with the previous .R program, polyI.R is general, based on

the angle of the sector which will always be

, where n is the

number of polygon sides. The base angles of the triangles will

be (0.5)*(pi -

) and the ± cos of this angle gives the

integration limits a and b. The total area of the two triangles

(0.5)*sin(1 -

). The program polyI.R employs simulation to

estimate the sector area ORS, returning an estimate of pi, and

the standard error of that estimate. As previously, one argument

(n) of polyI(n, N) is the number of sides of the circumscribing

polygon.

The following lines of R code will average the results of 50

runs:

estims <− replicate (50 , expr = polyI (n, N))

 colMeans(t(estims))

n = 4 ,5 ,6 ,8 , with N the number of simulations .

Table 3: A typical set of results for polyI

Standar

d Errors

N n = 4 n = 5 n = 6 n = 8

1000 0.015 0.010 0.0075 0.0043

10000 0.0048 0.003 0.0023 0.0013

100000 0.0015 0.0010 0.00075 0.00043

500000 0.0006 0.0004 0.00033 0.00019

A typical set of results is shown in Table 3. Clearly, the

standard error of the estimate is reduced as the number of

polygon sides is increased, which accords with the theoretic

probability density considerations (Ebert, 2020).

More decimal places

Even for the best of the results, viz: the octagon with N =

500000, with a standard error of the order of 0.00019, the pi

estimate is certain only to 3 decimal places. Better is possible.

92 King & Anderson, Monte Carlo simulations to estimate Pi

One variance reduction strategy which is applicable is that of a

control variate. A suitable function for the pi estimates above is

f(x) = x
2
; the mean value of x

2
in (a, b) is known. It is:

The program polyIcv.R adds this control variate to polyI.R.

Table 4 shows the pi estimates and standard error for 50 runs of

polyIcv.R for the case of the Octagon, using the following lines

of code:

estims <− replicate (50 , expr = polyIcv (8 , N))

colMeans(t(estims))

Table 4: pi estimates and standard error for 50 runs of polyIcv.R

Octagon

N piˆ s.e.

1000 3.14158 0.000046

10000 3.14159 0.000013

100000 3.1415928 0.000004

500000 3.1415928 0.000002

The last result with standard error of the order of 10
−6

is quite a

satisfactory one, obtained by restricting the number of

simulations and there exists the potential for other forms of

variance reduction, but that extension will not be continued

here.

Summary and conclusion

A simple Monte Carlo simulation, using functions from various

R packages, was used to achieve reasonable estimates of the

early digits of π using a variety of polygons to circumscribe a

unit circle. Polygons were segmented into triangles and

barycentric coordinates were used to provide a uniform

distribution of points within the triangles from the Monte Carlo

simulation tool. The number of polygon sides were increased

Electronic Journal of Informatics Vol. 3 December 2020 93

thereby increasing the ratio of the circle area to the enclosing

figure and leading to closer approximations to pi. The standard

error of the estimate was reduced as the number of polygon

sides increased. One of several possible variance reduction

methods was discussed.

References

Anderson E. Calculation of Pi using the Monte Carlo Method

Retrieved 25 August 2020, from

http://www.evananderson/pi/monte-carlo-demo.tcl.

Burkhardt. J, (2018). Computational geometry lab. Retrieved 25

August 2020, from

https://people.sc.fsu.edu/~jburkardt/classes/cg_2007/cg_

lab_monte_carlo_triangles.pdf

Ebert T. The Monte Carlo Method. Retrieved 25 August 2020,

from

http://web.csulb.edu/~tebert/teaching/lectures/552/mc/m

c.pdf

Authors

Rik King (PhD) is a retired Australian academic and now

continues his research interests in financial mathematics and

simulation methods.

Peter K. Anderson, (PhD) is Head, Department of Mathematics &

Computing Science, DWU. Email: panderson@dwu.ac.pg

94 King & Anderson, Monte Carlo simulations to estimate Pi

Appendix

tri . non−uniform

#−−−−−−−

non−uniformly distributednumbers over # the triangle (0 ,2) ,

(0 ,0) , (2 ,1)

N <− 2000

x <− 2∗runif (N);

y <− (x/2)∗ runif (N);

rnums <− matrix(c(x , y) , nrow = N);

plot .new() plot(rnums , xlim = c(0 ,2) , ylim = c(0 ,1) , pch = ’∗

’ , col = ”blue” , xlab = ’x ’ , ylab = ’y ’)

#——

tri . uniform

#−−−−

uniformly distributed numbers over # the triangle (0,2), (0,0),

(2,1)

library (uniformly)

N <− 2000 tri . uniform <− runif in triangle (N, c(0,0) ,c(2,0)

,c(2,1))

plot .new() plot(tri . uniform , xlim = c(0,2) , ylim = c(0,1) ,

pch = ’∗ ’ , col = ”blue” , xlab = ’x ’ , ylab =’y ’)

#−−−−

polyHM

#−−−−

library (uniformly)

polyHM <− function (n, N){ g <− function(u, v){uˆ2 + vˆ2}

tp <− tan(pi/n)

rit <− runif _in_triangle (N, c(−tp ,1) , c(0 ,0) ,c(tp ,1))

x <− rit [,1]; y <− rit [,2]; p <− g(x , y)

inside <− p[p <= 1]; num <−length(inside)

pd <− (n∗tan(pi/n)); Ex val <− (num/N);

pi est <− Ex_val∗pd; se <− pd∗sd(inside)/sqrt(N)

Electronic Journal of Informatics Vol. 3 December 2020 95

return(c(piest , se)) } # end function

example

estims <− replicate (50, expr= polyHM(6,1000))

colMeans(t(estims))

#−−−−−−−

polyI

#−−−−−−−

polyI <− function(n, N){

g <− function(u){sqrt(1 − uˆ2)}

x <− cos ((0.5)∗(pi − 2∗pi/n))

b <− x ; a <− − x ; Y <− runif (N, a , b)

tri . area <− 0.5∗sin ((n − 2)∗pi/n)

estim <− n∗((g(Y))∗(b−a) − tri . area)

me <− mean(estim); se <− sd(estim)/sqrt(N)

return(c(me, se))} # end function

example estims <− replicate (50 , expr = polyI (6 , 500000))

colMeans(t(estims))

#−−−−−−

polyIcv

#−−−−−−

polyIcv <− function(n,N){ options(digits = 8)

g <− function(u){sqrt(1 − uˆ2)} x <− cos ((0.5)∗(pi − 2∗pi/n))

a <− − x ; b <− x ; Y <− runif (N, a , b);

#− control variate Z−

Z <− Yˆ2;

cv <− function(w){wˆ3/3} # the mean for xˆ2

Zm <− (1/(b − a))∗(cv(b) − cv(a))

#−−−−−−

simulated mean of Y Yms <− mean(Y); tri . area <− 0.5∗sin

((n − 2)∗pi/n)

#−−−−−−

X <− g(Y); Xms <− mean(X)

c <− −sum ((X − Xms)∗(Z − Zm))/sum((Z − Zm)ˆ2)

96 King & Anderson, Monte Carlo simulations to estimate Pi

tmp <− (b −a)∗(X + c ∗(Z − Zm))

estim <− n∗(tmp − tri . area)

me <− mean(estim); se <− sd(estim)/sqrt(N)

return(c(me, se)) }# end function

example estims <− replicate (50 , expr = polyIcv (8 ,

500000)) colMeans(t(estims))

