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Variation of the value of Pi on non-Euclidean surfaces 

Peter K. Anderson 

Abstract 

Pi, the ratio of circumference to diameter of a circle, is an infinite non-repeating 

decimal number calculated, so far, to a trillion decimal places. This ratio was 

considered to be a universal constant until new geometries of curved surfaces were 

developed in the 19th  c. with the famous geometry of flat surfaces developed by 

Euclid (4th  c. BC) being but one example. In these non-Euclidean geometries, 

shortest paths are not straight lines, but great circles for spherical surfaces with 

positive curvature and hyperbolae for surfaces with negative curvature. This paper 

shows that on spheres, Pi becomes smaller as circle circumferences grow larger with 

the reverse occurring on hyperbolic surfaces. This topic is of general interest, given 

the worldwide celebration of Pi day on 3/14/xx each year when we try to interest the 

general population, including students in Madang schools, colleges and universities in 

mathematics. 
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Introduction  

Interest in Pi follows renewed focus on International Day of Mathematics Day (IDM) 

celebrated annually on March 14 as a worldwide celebration when all countries are “invited 

to participate through activities for both students and the general public in schools, museums, 

libraries and other spaces” (IDM, 2020, para. 1). 

 

This paper will attempt to assemble already developed accessible algebraic proofs to 

demonstrate that the values of Pi decrease with increasing radius for circles on the surface of 

a sphere and increase on hyperbolic surfaces. We approach this both by considering the ratio 

of circle circumference to the radius on each surface type and also by considering the ratio of 

circle area to the radius on each surface (IDM, 2020). 

 

Preliminary 

We note that ordinary trigonometric functions sin 𝜃 , cos 𝜃, and tan 𝜃 form points on a unit 

circle. In hyperbolic geometry, we have corresponding functions sinh (𝑥), cosh (𝑥) and 

tanh(𝑥), which represent points on the right half of an equilateral hyperbola, hyperbolic sine 

and hyperbolic cosine. Whilst 𝜃 refers to angles subtended at the centre of a circle, 𝑥 refers to 

positions on the 𝑥 axis (Figure 1). 
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Figures 1 and 2: Circle perimeter on hyperbolic surfaces 

 

The working of this section follows the method of UoG (n.dc). We consider a circle on a 

hyperbolic surface (Figure 3) where the shortest distance between any two points is a 

hyperbola. A triangle is shown as the first of an infinite number of equal area triangles to 

form an inscribed hyperbolic polygon to cover the circle. 

 
Figure 3 Showing a triangle on a hyperbolic surface where the shortest distance between any two points is a 

hyperbola. 

 

Let 𝑝 be the hyperbolic perimeter of an inscribed polygon consisting of n equal-area 

hyperbolic triangles, one of which is shown in Figure 3 . Let 𝑑 be the area of the hyperbolic 

polygon (Weisstein, n.d). 

 

We consider the polygon to be composed of 2n triangles CAB, each of area d/2n. We now 

use the well-known triangle sine rule for Δ CAB (Figure 3): 

𝑎/sin 𝐴 = 𝑏/sin 𝐵 = 𝑐/sin 𝐶 
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which becomes for ΔCAB where sin A = 1, since A is a right angle: 

a =
𝑏

sin 𝐵
=

𝑐

sin 𝐶
. 

Thus we can writes 

sin 𝐶 =
𝑐

𝑎
 

which can be written for Figure 3 as: 

sin (
𝜋

𝑛
) = sinh (

𝑝

2𝑛
) /sinh (𝑟)                                         (1) 

 

since 𝑥 maps to sinh (𝑥) on a hyperbolic surface where sinh (𝑥) is the shortest distance 

between two points on the surface. 

 

For n triangles, we can now write: 

nsin (
𝜋

𝑛
) = nsinh (

𝑝

2𝑛
) /sinh (𝑟)                                      (2) 

 

To proceed further, we need the Limit Lemma. 

 

Limit lemma 

The working of this section also follows the method of UoG (n.db). Here we prove the limit 

lemma for the sin and sinh functions which states that: 

If the function 𝑓 is differentiable at 0 and 𝑘 ≠ 0, then: 𝑛𝑓(𝑘/𝑛) → 𝑘𝑓(0) as 𝑛 → ∞. 

 

Proof: We use the well-known definition for differentiation. 

𝑓′(𝑥) = lim
ℎ→0

 
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

which, at 𝑥 = 0, becomes: 

𝑓′(0) = lim
ℎ→0

 
𝑓(ℎ) − 𝑓(0)

ℎ
 

 

We can now replace h with x a position on the x-axis, since sin and sinh functions are both 

zero at 𝑥 = 0, to derive: 

𝑓′(0) = lim
𝑥→0

 
𝑓(𝑥)

𝑥
. 

We now introduce constant k ≠ 0 such that 𝑘𝑥 → 0 as 𝑥 → 0 Thus 

𝑓′(0) = lim
𝑥→0

 
𝑓(𝑘𝑥)

𝑘𝑥
 

and so 

𝑘𝑓′(0) = lim
𝑥→0

 
𝑓(𝑘𝑥)

𝑥
. 

Now let 𝑘 = 1/n, with 𝑛 → ∞ as 𝑥 → 0 then 

𝑛𝑓′ (
𝑘

𝑛
) → 𝑘𝑓′(0) as 𝑛 → ∞. 
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For 𝑓(𝑥) = sin 𝑥 or 𝑓(𝑥) = sinh 𝑥 we have: 

𝑓′(0) = cos 0 = 1

𝑓′(0) = cosh 0 = 1
 

so we can conclude: 

      𝑓 (
𝑘

𝑛
) → 𝑘 as 𝑛 → ∞.                                                 (3) 

 

Incorporating the limit lemma 

We can now proceed using (3). As 𝑛 → ∞, 𝑝 → 𝐶(𝑟), the hyperbolic perimeter, and so 

equation (2) becomes: 

𝑛𝜋/𝑛sinh (𝑟)  = 𝑛
𝑝

2𝑛

𝜋/sinh (𝑟)  =
𝑝

2

 

 or 𝑝 = 2𝜋sinh (𝑟), and 

𝜋sinh (𝑟) =
𝐶(𝑟)

2
 with 

 

𝐶(𝑟) = 2𝜋sinh (𝑟), the hyperbolic perimeter.  

 

Variation of Pi on a hyperbolic surface 

We now consider the value of Pi for a circle on a hyperbolic surface and let 𝜋 ' be the value 

of 𝜋 (ratio of circumference to diameter) on a hyperbolic surface. We have: 

𝜋sinh (𝑟) = 𝜋′𝑟 

and so 

𝜋′ = 𝜋sinh (𝑟)/𝑟.                                                   (4) 

 

Variation of Pi on a spherical surface 

The working of this section follows the method Maximenko (2015). We now consider a 

spherical surface and the Δ CAB (Figure 3). 

 
Figure 3 3D sphere with circles of surface radius r ' and plane radius 𝑟 on its surface. 

 

Sin 𝛼/2 = 𝑟/𝑅                                                        (5) 
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from trigonometry and by definition of radian angle measure, we have: 

 Angle in radians = subtending arc / radius 

 
 = r′/R for ΔCAB

 

 

=
𝛼

2
  .                                                                           (6) 

From (5) and (6) we can write: 

𝑟′

𝑅
=

𝛼

2
/sin (

𝛼

2
) 

and, since 𝑟 < 𝑟′: 

𝑟/𝑟′ = sin (
𝛼

2
) / (

𝛼

2
) < 1. 

 

For a spherical surface, circle circumference is 2𝜋𝑟 = 2𝜋′𝑟′. 

 

Where, again, 𝜋 ' and r' refer to the surface values. Thus, we have an expression for the 

variation of 𝜋 with surface radius: 

𝜋′ = 𝜋𝑟/𝑟′ < 𝜋

 = 𝜋sin (
𝛼

2
) / (

𝛼

2
)

 = 𝜋sin (
𝑟

𝑅
) / (

𝑟

𝑅
)

 

 

= 𝜋sin (𝑟)/(𝑟)                                                   (7) 

for a sphere with unit radius, 𝑅 = 1. 

 

Comparing Pi variations 

Using equations (4) and (7) we can compare the variation of Pi on each of the two types of 

surfaces discussed in this paper as the surface radius of circles is increased. Whilst the value 

of Pi on a plane surface is constant and does not vary with circle size, Pi increases rapidly for 

a hyperbolic surface and decreases for a spherical surface. 

 

 
Figure 4 Using equations (4) and (7) we can compare the variation of Pi on each of the two types of surfaces 

discussed in this paper as surface radius is increased. 
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Surface area of a circle on a hyperbolic surface 

Again, we consider a triangle on a hyperbolic surface (Figure 3) multiple occurrences of 

which will cover the whole circle area (UoG, n.da). From Heron's formula for triangle areas 

adapted for hyperbolic triangles: 

 

sin (
𝑑

𝑛
) = sinh (𝑎)sinh (

𝑝

2𝑛
) /(cosh ((𝑟) + 1) 

 

where 𝑑 is triangle area, and for 2n triangles we have: 

2nsin (
𝑑

𝑛
) = sinh (𝑎)2nsinh (

𝑝

2𝑛
) /(cosh ((𝑟) + 1). 

 

Let D(r) and C(r) be the hyperbolic circle area and circumference respectively. As       n → ∞,

D(r) = d, the hyperbolic circle area, a → r, & and C(r) = 𝑝 the hyperbolic circumference. 

We can now write: 

𝐷(𝑟) = (sinh (𝑟)𝐶(𝑟))/(cosh (𝑟) + 1)

 = (sinh (𝑟)2𝜋sinh (𝑟))/(cosh (𝑟) + 1)

 = 2𝜋sinh2 (
𝑟

2
) cosh2 (

𝑟

2
) / (2cosh2 (

𝑟

2
))

 = 4𝜋sinh2 (
𝑟

2
)

 

 

Thus, area of a circle on a hyperbolic surface is given by: 

 𝐷(𝑟) = 4𝜋 sinh2 (
𝑟

2
).                                                 (8) 

 

Surface area of a circle on a spherical surface 

The working of this section follows the method of StackExchange (2016). Referring to Figure 

5 we have: 

𝛼 =
𝑟

𝑅
 and sin 𝛼 =

𝑥

𝑅

sin (
𝑟

𝑅
) =

𝑥

𝑅

𝑥 = 𝑅 sin (
𝑟

𝑅
) .

 

 
Figure 5 The area of a cap on a sphere is calculated by considering a thin disk of radius x and thickness 𝑑𝑥′ and 

then integrating the disk surface strip from 0 to 𝑟 '. 
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Area of circular surface strip = 2𝜋𝑥𝑑𝑥′ 

Area of cap, 

A = 2𝜋𝑅 ∫  
𝑟′

0

 sin 
𝑥′

𝑅
𝑑𝑥′

= 2𝜋𝑅2 ∫  
𝑟′

0

 sin 𝑦𝑑𝑦 where y = 𝑥′/𝑅&𝑅𝑑𝑦 = 𝑑𝑥′  = 2𝜋𝑅2[−cos 𝑦]0
𝑟′/𝑅

 = 2𝜋𝑅2 (1 − cos (
𝑟′

𝑅
))

 = 2𝜋(1 − cos 𝑟′)

 

for 𝑅 = 1 on a unit sphere. 

Thus, area of a circle on a spherical surface is given by: 

𝐷(𝑟) = 2𝜋(1 − cos 𝑟′).                                              (9) 

 

Comparing circle area variations 

Using equations (8) and (9) we can compare the variation of circle area on each of the two 

types of surfaces discussed in this paper as the surface radius of circles is increased. Disks 

areas grow faster with length of surface radius on plane surfaces than on spherical surfaces 

and faster again on hyperbolic surfaces. 

 

Circle area 

 
Figure 5 Disks areas grow faster with length of surface radius on plane surfaces than on spherical surfaces and 

faster again on hyperbolic surfaces. 

 

Conclusion 

This paper has assembled algebraic equations to demonstrate that the values of Pi decrease 

with increasing radius for surface circles on a sphere and increase on hyperbolic surfaces. 

This has been approached both by considering the ratio of circle circumference to the radius 

on each type of surface and also by considering the ratio of circle area to the radius on each 

surface. 
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