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A Benford primer 

Rik King 

Abstract 

This paper aims to excite the curiosity of the reader to achieve a basic level of 

understanding of the meaning of Benford’s law. Benford’s law concerns the 

prevalence of first and subsequent digits which appear in naturally occurring 

numerical transactions. One possible forensic application is in the detection of fraud 

in machine-generated sets of data, which do not obey this law. In addition to 

explanation with illustrative examples, some programs constructed in Excel and R are 

provided. 
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Introduction 

It is thought that Mathematics dates from the Sumerian civilization circa 3000 BC., from 

which many centuries of mathematical research displaying sophistication and complexity 

follow. So there is something surprising and very wonderful about the simplicity of a 

discovery depending merely on the numbers 0,…,9. This has popped up in the modern era; 

and with no insignificant mathematical curiosity, it turns out to be the focus of a very intense, 

expanding current research area. 

 

This short article aims to excite the curiosity of the reader to achieve a basic level of 

understanding of the meaning of Benford’s law.  In addition to explanation with examples, 

some programs constructed in  Excel and  R  are meant to be worked through in a ‘learn as 

you go’ style. 

 

The leading digit 

To begin with, think about the numbers which form so many of our transactions in everyday 

life. Usually, these are greater than 0, that is, positive. Now, each number has what is called a 

leading digit, which is just the first part of the number on its own. So, for example, the 

leading digits of the numbers 7.62, 34 and 0.0528 are 7, 3 and 5 respectively. A leading digit 

can be any one of 1, . . . ,9 (0 is not in the list because then the number would be 0, and not of 

any interest). Presented with a large file of numbers to be examined, intuition would suggest 

all the leading digits i.e 1 to 9, should appear as frequently as each other - as many ones as 

twos as threes etc. as nines - indeed, why should it be otherwise? In Statistics, however, 

intuition often misleads, which is how it turns out in this case. 

 

The surprising fact is, that, in very many collections of numbers, there are fixed proportions 

of leading digits 1 to 9, and these proportions are far from equal. The values are given by 

Benford’s Law (Benford, F.,1938), a statement of which is as follows: 
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The proportions for d being the first digit of a number are given approximately by  

log10( 1 + 
1

1+𝑑
)                         (1) 

 

where d is any of (1,…,9). This gives rise to Table 1 below: 

 

Table 1:  Benford’s Law 

Digit 1 2 3 4 5 6 7 8 9 

Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

 

So, this means that in a collection of numbers there should be about 30% ones, 17% twos - 

just under 50% ones and twos combined, but only 5% nines. Figure 1 displays these 

proportions. 

 

Thus, it turns out that the first digits of numbers in many collections of data, rather than 

following a uniform distribution (equal amounts), follow a discrete logarithmic distribution, 

unusual, because it is not described with the help of any parameter: the formula involves only 

d, the digit number, and no other variable. The logarithmic term may be to any base, but base 

10 is most frequently used. 

 

Frank Benford was a physicist and the connection between his work and that of an earlier 

(1881) researcher Simon Newcomb, who was an astronomer, is truly fascinating. Stoessiger 

(2013) gives an interesting account of the link between the work of the two researchers. 

 

Exploring a data file 

The working for this section follows the method of Lanham (2019), which details how to 

obtain a large data source suitable for investigation. For every state in the USA, there is a 

State Occupational Employment and Wage Estimates (SOEWE) document, which provides 

information on employment and wage estimates for various occupations, with data collected 

directly from employers in all industry sectors. Data sets for different years are downloadable 

from the US Bureau of Labor Statistics1.  

 

This section is best read by working step-by-step through a data file, as described below after 

downloading into Excel a data set for any year from SOEWE. Here we discuss the SOEWE 

(2019) data set comprised originally of 36,383 records, reduced to 34,853 entries after sorting 

and the removal of incomplete lines. 

 

Some simple Excel commands have been used to extract the first digit for each of the 34,853 

records, and then collect the digits into groups and count the number in each group. The 

cleaned example file SOEWE.xls displays the following columns: 

(i) Column C: the employment numbers 

                                                           
1 https : //www.bls.gov/oes/current/oessrcst.htm 
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− 

(ii) Column D, the first digit of each number in column C, extracted by the Excel 

function LEFT(.) 

(iii) Columns F - N, the count of digits in column D, extracted by the Excel function 

COUNTIF(.,.) 

 

The final proportions for digits 1 to 9 do not appear on the spreadsheet but should be 

calculated by the reader and checked from Table 2 and Figure 1 below: 

 

Table 2:  SOEWE result 

Digit 1 2 3 4 5 6 7 8 9 

Proportion 0.298 0.167 0.123 0.101 0.083 0.069 0.058 0.054 0.044 

 

 
Figure 1: Benford’s Law. 

 

In Figure 2 results are compared with the probabilities noted by Benford, showing good 

agreement (helped along by the large size of the SOEWE file).  

 
Figure 2: Benford values and SOEWE values. 
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Using R 

While Excel spreadsheet is a useful method for processing large data files, the same results 

may be achieved through longer processes by using R. There is a sophisticated R package 

entitled BenfordAnalysis.R due to Cinelli (2018) which downloads data from several formats 

and conducts analysis at elementary and higher levels. 

 

Fibonacci numbers 

It is known that many mathematical sequences obey Benford’s Law and amongst these is the 

well-known sequence due to Fibonacci where numbers are defined by the recurrence relation 

Fn+2 =  Fn+1 + Fn,  with F0 = 0 and F1 = 1. However, from the demonstration point of view, it 

is unfortunate that the terms grow large very quickly, and even using an efficient recursion, 

generating a large data file is beyond the capacity of an average laptop. A bypass of this 

difficulty is provided by Binet’s approximation (Miller, 2015), which is given by: 

 

 
 

Since, however, terms with n large are to be generated, it is useful to simplify the above to:  

 

This second form of Binet’s approximation is employed in the program Fib.R, listed in 

Appendix (i). There, 1000 Fibonacci numbers are generated and the leading digit extracted; a 

count is made of the digits 1 to 9 and their proportions of the total (1000) calculated. The 

results, showing good agreement with the Benford values of Table 1, are displayed in Table 

3. 

 

Table 3: Benford’s Law & Fibonacci numbers 

Digit 1 2 3 4 5 6 7 8 9 

Benford 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

Fibonacci 0.301 0.177 0.125 0.096 0.080 0.067 0.056 0.053 0.045 

 

The Fibonacci numbers are discrete - i.e. in distinct units.  It is useful now to look at a 

different growth process, a continuous set of numbers, this time drawn from Finance. 

 

Finance 

The material of this section follows the method of Miller (2015), which begins with the well-

known formula for the amount $A, accruing from an amount of $P invested for n years at a 

rate r% per annum: 

A = P (1 + 0.0r)n     (4) 
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An adaptation of the above formula is useful for considering the leading digits of the 

amounts. If d is the leading digit of an amount invested, after n years, the amount grows and 

the leading digit d moves up by 1 to become (d + 1). Thus, amount d(1 + 0.0r)n = (d + 1). 

Solving for the number of years n is more appropriately done with logarithms to the base 10, 

rather than the usual natural logarithms, since the digits 1...9 are involved: 

 
 

From the foregoing format, it is possible to answer the following question: how long does it 

take for a deposit of $1 to grow to over $2, then how long for over $2 to become over $3 and 

so on?  Notice that there will be intervals during which the leading digits of the amounts will 

be respectively 1, 2, 3,...,9. The quantities of interest are the lengths of the intervals during 

which the leading digit stays the same. This is because any count of digit frequencies will 

show a higher reading for a leading digit, which persists for a longer interval. 

 

Listed in Appendix (ii) is the program My Deposit.R. It accepts the arguments amount and 

interest rate (no % sign) compounded annually, time being taken as indefinitely long. The 

function first needs to be defined in R, after which it is ready to be run for any specific 

example. 

 

The following paragraph uses the results from that program, which the reader is encouraged 

to run. Consider the results from My Deposit (10, 5) which describes $10 which has been 

invested at 5% per annum. 

 

The output appears in two sections. The first header viz. ”time to next digit up” indicates in 

years, how long it takes for the $10 to become $20, then $20 to become $30, then $30 to 

become $40, all the way up to $90: in other words, how long an amount remains with the 

same leading digit before jumping up to the next digit. So, reading from the output shows that 

it takes 14.2 years for $10 to become $20 and 8.3 years for $20 to become $30, etc. Therefore 

there were many more leading digit ones than twos, because of the relative lengths of the 

time intervals in which the leading digit did not jump up to the next value. The times for a 

digit to “jump up” steadily decrease. The second part of the output with the header time as a 

fraction of total time: 1 - 9 lists each time spent with a leading digit as a fraction of the 

overall time for the money to get from $10 to $90. For the example above, going from $10 to 

$20 took 0.301 of the total time, but from $80 to $90 only 0.045. 

 

The program should be run several times for varying initial amounts when it becomes 

apparent that the second part of the output - a fraction of total time - is always the same. This 

is because it is the ratios of quantities (due to the interest rate) that count, and not the 

quantities themselves: it takes as long to get from $100 to $200 as from $10 to $20. Also, 

running the program for varying interest rates results always in the same fractional times. The 

core of the calculation - what is actually happening in the program - is exhibited in Table 4 

below: The right-hand column, is, of course, just the Benford numbers. 
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Table 4: Program results 

Digit Log - Log Result 

1 log 2 - log 1 0.301 

2 log 3 - log 2 0.176 

3 log 4 - log 3 0.125 

4 log 5 - log 4 0.097 

5 log 6 - log 5 0.079 

6 log 7 - log 6 0.067 

7 log 8 - log 7 0.058 

8 log 9 - log 8 0.051 

9 log 10 - log 9 0.046 

 

The above example is highly simplified - so, in particular, invested amounts are often not 

constant and interest rates typically vary over time, however, for the sake of simplicity in the 

demonstration, these complicating factors have been ignored. 

 

There is a further very important point connected with My Deposit.R. It worked for dollar 

units of investment, but it could have worked just as well for an investment of the same 

amount converted to francs or yen - the final results would be connected by the currency 

conversion factors. The behaviour depended not on quantities, but on the ratios of quantities, 

governed by the interest rate: this is a point amplified in a later discussion on scaling. 

 

Applications  

Benford’s law is not universal. The data must show a full order of values from 1 to 9 fold, 

and must not have imposed natural maxima or minima e.g. the petal sizes of a particular 

species of flower would not be suitable data. It does not apply to manufactured numbers such 

as car license plates, telephone numbers or bank account numbers. In general, it holds for 

natural numbers such as the area of landmasses, and volumes of river flow; and for many 

fundamental physical constants and quantities from the natural sciences. 

 

A big area of application is finance (the topic of the final section). Various types of data 

certainly follow the law very accurately: these include stocks, shares, mathematical 

combination of numbers, such as quantity multiplied by price disbursements, and sales 

numbers. 

 

A cautionary remark, however about general criteria for Benford suitability is in order. The 

great expansion in the diversity of applications, never envisaged even a few short years ago 

e.g. intensities in digital imaging, have consigned some previously held certainties into the 

hypothesis category, so now some writers e.g. Miller (2019) refer to previously held 

certainties on applicability as hypotheses, so e.g. the ‘spread hypothesis’. There are now, 

however, formal approaches to proving whether a system satisfies Benford’s Law. (cf. Berger 

& Hill, 2011).  
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Their work also provides the answer to the following question which may cross the mind of 

the reader: Is it possible to manufacture a set of numbers, which with certainty, will display 

the values of the Benford distribution? The short answer is ‘yes’.  

 

To see that this is so, run the program Benford.R to be found in Appendix (iii). It simulates 

5000000 numbers; a typical output is shown in Table 5 below: 

 

Table 5: Benford’s Law & simulated numbers 

Digit 1 2 3 4 5 6 7 8 9 

Benford 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

Simulated Nos 0.301 0.176 0.126 0.097 0.078 0.067 0.058 0.051 0.046 

 

The following section may be skipped on first reading but for the more curious reader, it 

gives details of the standard inverse transform method for generating a random variate for the 

case of a logarithmic distribution. 

 

Generating Benford numbers 

In equation (1), a working definition of Benford’s law, it is implicit that the proportions may 

be expressed as probabilities. Thus, the equation may be recast as: 

 

 
 

where D is the probability that any digit will be d, d E(1,9). Actually, it is easy to show that 

equation (6) above holds for any base, not just 10, but in the interests of simplicity, base 10 

will continue to be used here. 

 

Equation (6) sums to 1 as a true probability distribution must do: the demonstration of this 

proceeds as follows: 

 

The probability that the first digit D = d is given by 

 

 
 

which confirms equation (6) as a probability density function. Knowing the probability 

density function (pdf) makes it possible to get the cumulative distribution function (cdf), 

which is obtained as follows: 
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/ 

and then 

 
so that the distribution function is 

 

F (x) = P (X ≤ x) = log10(d + 1)    (11) 

for x = 1, 2, . . . , 9 

 

Then the usual inverse transform method given for a Benford variate X is 

 

X =  ⌈10𝑈 − 1⌉      (12) 

 

whence X ← ⌊10𝑈⌋ ; this is the procedure implemented in Benford.R from Appendix (iii). 

 

Scaling 

A special feature of data sets that obey Benford’s law is the following: multiplying a set of 

numbers that obey Benford’s law by some constant number will produce another set of 

numbers that also obeys Benford’s Law. Whatever the constant, the new, different, numbers 

will also obey the law. 

 

Consider the following small example. Suppose a set of numbers is (1.3, 4.5, 6.2, 2.4, 8.0, 

3.0) with leading digits in bold type. Multiplying the set by, say, 1.5, gives a new set. Using a 

calculator will show that the new leading digits are (1, 6, 9, 3, 1, 4). The numbers have 

changed, some leading digits disappear, others reappear; so in a large set, it is plausible that 

the proportions of leading digits might remain the same. 

 

For a demonstration, run the program Fib.R, choosing again to calculate 1000 numbers. This 

time a small positive constant (= 1) is to be entered; it is to multiply (scale) the Fibonacci 

numbers. So, for example, the input might be Fib(1000, 1.5). The output, after making 

allowance for round off error, is almost exactly the same as in the Table 3 Benford values. 

 

This unchangeable feature of Benford’s Law is described as scalability or scale invariance. 

While the above program is only a demonstration, Berger & Hill (2011) gave a formal proof 

of this characteristic based on manipulations in a σ algebra (but that is beyond the scope of 

this primer).  Further of interest is this fact: Pinkham (1961) had already shown that there can 

be no other scale invariant distribution of first digits: that is, Benford’s is the only one. 

 

A consequence of the scaling property is that physical measurements of natural phenomena in 

any set of units will obey Benford’s Law. So, for the previously mentioned data set of world 

river lengths, it doesn’t matter whether the units are miles or kilometres: nature doesn’t 

discriminate - scaling operates. 
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Number invention and tampering 

One of the first in the field of applications to finance was Nigrini (1999), who, in 1993, was a 

young accountant.  He gives details of an Arizona USA fraud trial in which he was involved.  

A company employee, in the course of his work, had paid random amounts totalling about 

$2,000,000 into his own bank accounts. Random was the problem - for the employee, of 

course; but not for the Court, which compared actual digit occurrences with Benford’s  Law, 

and brought down a finding of guilty of fraud. Nigrini’s paper is aptly titled ‘I’ve Got Your 

Number’!   

 

How forensic finance investigation operates will now be illustrated by a basic level example. 

Table 6 below exhibits first digit data from a file of 2525 entries, containing falsified entries, 

as quoted in Nigrini (2008), and displayed in Figure 3, where there is an obvious divergence 

from the Benford values. 

 

Table 6:  False Data 

Digit 1 2 3 4 5 6 7 8 9 

Number 668 381 256 244 235 212 208 179 142 

 

 
Figure 3: The Benford line and False data values. 

 

The data in Figure 3 is an example only. For real-life data, ascertaining Benford compliance 

often depends on subsequent Z-tests and ChiSquare tests. 

 

Further digits 

Benford probabilities apply not only to the first digits of numbers, but also to second, third, 

and fourth digits, with a probability law which is more complicated than the one used so far; 

but a log10 distribution still applies; additionally, there is a term of the   (1 +
1

1+ 𝑑
) type. 

 

A little preliminary explanation may be useful. Suppose 4 to be a second digit: it can occur as 

14, 24, 34, 44,…, 94 so the probability of a 4 occurring must involve a sum of probabilities; 
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and likewise for the other digits out of (1, . . . ,9). Also, there must be a 10 multiplying any 

second digit, to ensure that it is fixed in the second decimal place. Finally, 0, which was not 

admissible as a first digit, can occur as a second digit. Putting all this together results in the 

probabilities of occurrence of digits first and higher: 

 
 

where P is probability; d1, d2, ...,dm, are digits with dj ≥ 2, and m is an integer 0 → 9. 

The first digit place is where the distribution of Benford’s Law differs the most from the 

uniform random distribution; subsequent digit probabilities tend more and more towards the 

uniform. The start of the ‘becoming more uniform trend is demonstrated with the 

probabilities of the first and second digit in Figure 4(a), 4(b) below: 

 

 

 

(a) First Digit (b) Second Digit 

Figure 4: First and Second Digit 
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Amongst the many specialized applications of multiple digit analysis, two are mentioned 

briefly below. 

 

(i) Finance 

Among the different general levels of digit analysis, the test for the first digit is the most 

effective in pointing to suspicious data. It also plays a role in deciding on the size of a sample 

considered for further investigation, an important factor for auditing cost. Different tests have 

different functions: one set of five tests, following ACFE (2020), is as listed below: (a) The 

first digit test (b) The second digit test (c) The first and second digit test (d) The first three 

digits test (e) The last two digits test. It is impossible to mention here the huge spread of 

applications - basically any transaction, government or private where money may change 

hands. 

 

(ii) Election fraud 

The second digit test - 2BL for short - has played a role in detecting figures that may suggest 

election fraud. While an enormous amount has been written on this topic, involving specific 

election results from particular countries (see Mebane, Walter R.Jr. for examples), academic 

debate on the application of 2BL to elections is ongoing. The existence of uncertainty at that 

level of discussion is a clear signal for the conclusion of a primer level understanding of 

Benford.  

 

Conclusion 

The understandings gained by working through this primer should be adequate to progress on 

to one of the specialized areas of application of Benford’s law. These are far too numerous to 

mention, but a few are physics, computer science, scientific data quality control, digital 

imaging forensics, and biology. Their number is constantly expanding. 

 

Appendices 

(i) Fib.R 

Fibonacci nos. & Binet’s Approximation. Fib(n, k = 1) generates the first n Fibonacci 

numbers and multiplies them by constant k (defaultvalue = 1) 

Fib <- function(n, k = 1)  

{ #------ begin function 

  # fd extracts first digits  

  fd <- function(x) { 

    a = log10(x) %% 1; floor(10^a) } 

  # nos holds generated numbers 

  nos <- c() ; s = sqrt(5) 

  for(i in 1:n){ 
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    nos[i] =1/s * ((1 + s)/2)^i} 

  ben = fd(k * nos) ; 

  round(table(ben)/n, 3) 

} #------- end function- 

Examples 

benf = Fib(1000) generates the first 1000 Fib.nos 

benf = Fib(1000, 1.5) generates the first 1000 Fib.nos multiplied by 1.5 

——————————————————————————————— 

(ii) My Deposit.R 

My Deposit.R takes the arguments amount and interest rate. It outputs times and fractional 

times for digit d to become d + 1 

My_Deposit <- function(amount, rate){ # begin function 

dep = c(rep(0,9)); R =log10(1 + rate/100) 

for(d in 1:9){dep[d]= log10((d + 1)/d) *1/R} 

dep = round(dep,3)  

pc.time = round(dep/sum(dep),3) 

out = list("time_to_next_digit_up" = dep, 

"time_as_fraction _of_total_time: 1 -> 9" = pc.time) 

return(out) 

} # end function 

——————————————————————————————— 

Example: My_Deposit(10,5) 

——————————————————————————————— 

(iii) Benford.R 

Benford.R generates numbers obeying Benford’s Law 

# N.B. increments are drawn from R’s Uniform Distribution 

# Benford.R 

# Final version of Benford numbers 

N = 500000; # number of replications 

x = floor(10^runif(N)); # digits 

benf = table(x)/N 

round(benf,3) 

——————————————————————————————— 

Output: 500000 first digits sorted into bins (1,. . . , 9) 

——————————————————————————————— 

 



Electronic Journal of Informatics Vol. 4 December 2021                                                                                                         87 

 

References 

Berger A.& Hill T.P. (2011). A basic theory of Benford’s Law. Probability Surveys, 8, 1-126. 

Benford, F. (1938). The law of anomalous numbers. Proceedings of the American 

Philosophical Society 78, 551-572. 

Cinelli, C. (2018). Benford Analysis.R, Retrieved 1 November 2021, from 

http://github.com/carloscinelli/benford.analysis.   

Lanham S. W. (2019). Analyzing big data with Benford’s Law. American Journal of 

Business Education, 12(2), 33-42. 

Leemis L. (2018). Probability, Lightning Source: USA. 

Miller S.J. (2015). A quick introduction to Benford’s Law, Princeton University Press: USA. 

Newcomb, R. (1881). Note on the frequency of use of the different digits in natural numbers 

American Journal of Mathematics, 4, 39–40. 

Nigrini, M. (2008). The problem of false negative results in the use of digit analysis Journal 

of Applied Business Research, 24(1), 17-26. 

Nigrini, M. (1999). I’ve got your number Journal of Accountancy, 187(5), 79-83. 

Pinkham, R. S. (1961). Ann. Math. Stats. 32: 1223-1230 R, https://www.r-project.org 

Stoessiger, R. (2013). Benford’s Law and why the integers are not what we think they are: A 

critical numeracy of Benford’s Law Australian Senior Mathematics Journal, 27(1), 

29-46. 

US Bureau of Labor Statistics (2021). Occupational employment and wage statistics 

Retrieved 1 November 2021, from https:/www.bls.gov/oes/current/oessrest.htm. 


