
Contemporary PNG Studies: DWU Research Journal Volume 11 November 2009 19

From C++ to Python

Lakoa Fitina

Abstract

The Python programming language is set to become one of the most
popular languages in the years to come. This paper describes some
features of the language that make it a logical and attractive language to
use as a programming language at Divine Word University.

Key words: computer programming language, Python, problem solving

Introduction

Problem solving is an essential skill that a computer scientist must acquire.
Computer science students must spend the first two years learning how to solve
problems, and how to express the solution to a problem in a sequence of
unambiguous statements, called an algorithm. An algorithm may be written in
an abstract language, called pseudocode, or in a computer programming
language.

A programming language is a language designed to describe a set of
consecutive actions to be executed by a computer. A programming
language is therefore a practical way for us (humans) to give
instructions to a computer.

Kioskea (en.kioskea.net) 2008

Writing a solution in a computer language and then running the solution on a
computer is called implementing the solution. Often a solution may be ‘stored’
in pseudocode form and then translated into one or more programming
languages for implementation on a computer.

Choosing a computer programming language in which to implement an
algorithm is not necessarily a trivial matter; one reason is that there are so
many such languages to choose from. As of today there are more than three
thousand programming languages. One reason to choose a particular language
is that it is easy to use, simple to learn, but at the same time that the language
contains enough facilities for the project in mind.

Some programming languages are more popular than others. The popularity of
a language may be measured based on (a) the number of new applications
written in the language, (b) the number of existing applications written in the
language, (c) the number of developers that primarily use the language, and (d)
the number of developers that use the language. Some popular languages
include C, C++, Java, Visual Basic, PHP, Perl, Ruby, Delphi, C#, and Python
(Tiobe, 2009).

20 Fitina, From C++ to Python

Choosing a programming language to teach is often just as difficult as choosing
a language to use. For one thing, one must consider the students.

Mathematics and Computing Science at Divine Word University

At the beginning of 2009 the Divine Word University (DWU) established a
degree program in Mathematics and Computing Science (hereafter called the
program); and the program took in its first intake of students at this time. The
program consists of four years of study in Pure Mathematics and Computer
Science. Successful candidates are awarded the Bachelor of Mathematics and
Computing Science degree. Students may elect to exit after two years of study,
in which case they obtain a Diploma in Mathematics and Computing Science.

The program contains a sequence of programming units including:

• Introduction to computing science
• Computer programming
• Design and analysis of algorithms
• Object oriented programming
• Programming languages
• Graphics programming
• Human computer interaction
• Software engineering.

Programming therefore forms a substantial component of the program.

The unit Introduction to Computing Science is meant to be an introduction to
computing science in general, programming being one of the many topics
taught. Depending on the lecturer and the types of students the programming
component of this unit may be increased or decreased.

The unit Computer Programming focuses almost entirely on programming
concepts, with an emphasis on algorithm creation and translation from
algorithm to computer program. Students write programs that are mostly
procedural; that is, programs are composed of blocks of code, each block
performing a single task.

These two units form the basis for all programming and data structure units in
the program. Therefore teaching students the science, mathematics and art of
programming is of paramount importance. Just as important as the teaching
techniques, is the programming language itself (Reynolds, 2008).

Most novelists use a single language, whereas most programmers use many,
quite different programming languages. Moreover, almost every programming
language attempts to embody a particular style of programming, so that a broad
education requires immersion in a variety of programming languages.
However, when learning programming, students should first learn to program
in a single well designed programming language (or perhaps a small number of

Contemporary PNG Studies: DWU Research Journal Volume 11 November 2009 21

stylistically varied well-designed languages) that imposes a minimal number of
obstacles to the programming task (Reynolds, 2008).

The question therefore is, which, of the many thousands of languages currently
in existence, should we choose?

Choosing a programming language

At Divine Word University, students come with different backgrounds. Those
who grew up ‘in town’ may have had some exposure to computers either at
home or in the school they attended. Then there are those who had never seen a
computer before, let alone touched one.

Therefore, there are issues that come with teaching programming at DWU that
are not obvious in a developed world scenario.

The latter type of student needs to be kept in mind at all times, in the first few
weeks of their first semester. The pace must be such that such students are
given time to fiddle around with the keyboard until they are sufficiently
confident enough to write programs. Extra tutorial classes may be scheduled
for such students. But this is neither here nor there with respect to the
programming language that one must choose to teach introductory
programming.

The author of this article came to DWU in June of 2006, as a senior lecturer in
the Information Systems program. The program has a procedural programming
unit in year two, and an object oriented programming (OOP) unit in year three,
both taught using the programming language C++. In addition, there is a year
two unit which teaches aspects of Visual Basic, which the author also took.

He was asked to teach the OOP unit in his first semester. To his surprise, the
level of programming skill in the class was less than what one would expect
from a third year class doing their third programming unit. Students were still
struggling to write code for basic structures like loops, decisions and arrays.
Writing one’s own classes was a difficult exercise. Obviously there was not
going to be much OOP learning that semester. The basics had to be revisited all
over again.

The students in the Mathematics and Computing Science program were not
much better. Much of the unit Introduction to Computing Science was
programming using C++. C++ was chosen because it is used widely in many
universities throughout the world. As well, there is an abundance of textbooks
and teaching resources one can use with the language.

One can argue that there were various factors contributing to the low-level
performance of students in programming, and that may be true. There needs to
be an extensive study of this. However the author noticed that students were
better able to ‘write’ code in Visual Basic, especially if the code required
manipulation of graphical objects like windows, boxes and various other

22 Fitina, From C++ to Python

widgets; things that had shorter development time in Visual Basic than in C++.
He thought he should start looking for a programming language wherein
students could start programming with graphics in the first few weeks and at
the same time would be easy to learn, has easy syntax, and is powerful.

What programming language should be taught at DWU? How does one choose
a language? What properties/requirements should a (teaching) programming
language have? Requirements for a programming language suitable for
teaching have been precisely specified by many academics who reached an
agreement that an ideal language should have the following properties (Kölling
1999; McIver 1996).

• Readable syntax, using keywords over symbols wherever possible. A
readable program is easier to understand for students, and it is more
likely to be correct.

• High level, isolating students from concepts irrelevant at an early
stage of programming, for example memory management, execution
model, etc.

• Small size, so that the teacher does not have to present only a subset of
the language, and the students are not confronted with concepts they
did not learn about in class.

• Core concepts presented in a clean and consistent way. The language
should use these concepts in the same way as they are being presented
in class. In no way should the language dictate what is taught and
how.

• There should exist a clear connection between the teaching language
and languages used in the industry, facilitating an easy transition from
classroom learning to the ‘real world’.

The last point here is the one that requires many compromises on other
important features. A number of languages, such as Pascal, Eiffel or Blue failed
as teaching tools because of their ‘academic’ characteristics, too distant from
languages widely used in the industry.

On the other hand, professional languages like C++ and Java proved to be too
complex and difficult for teaching. They simply obscure the key concepts that
every first year computer science undergraduate should learn. Some argued that
because of their complexity, they should start being taught as early as possible
for students to be able to master them by the time they leave university. The
problem with this reasoning is that languages used by the industry are
constantly replaced by new ones, and hardly any computer professional uses
for their daily work the language he or she first learned at university.

One of the most recent ideas on how to get out of this paradigm/language
deadlock is to use dynamic scripting languages that can potentially provide the
best of both worlds – early exposure to object-orientation without
overwhelming students with incomprehensible, overly verbose code. Python
fits the bill.

Contemporary PNG Studies: DWU Research Journal Volume 11 November 2009 23

The Python programming language

The unit Computer Programming is an optional unit that can be taken in
semester two of the year one Mathematics and Computing Science program, in
place of an accounting unit. The Computer Programming unit is meant to be
taught at a fairly advanced level, if the department feels that a particular class
of students is capable of and will benefit from an accelerated unit in computer
programming or software engineering. However as the first intake class did not
do so well, the department decided to run the unit, using a different language to
C++, in order for students to go over the basics of programming again, while at
the same time learning something new, like a new language. The author seized
on the opportunity to try out Python.

Python was released by its designer, Guido Van Rossum, in February 1991
while working for CWI also known as Stichting Mathematisch Centrum.
Python actually got its name from a BBC comedy series from the seventies
‘Monty Python's Flying Circus’. The designer needed a name that was short,
unique and slightly mysterious. Since he was a fan of the show he thought this
name was great.

Python is an interpreted, interactive, object-oriented programming language. It
incorporates modules, exceptions, dynamic typing, very high level dynamic
data types and classes. Python combines remarkable power with very clear
syntax. It has interfaces to many system calls and libraries, as well as to various
window systems, and is extensible in C or C++. It is also usable as an
extension language for applications that need programming interfaces. Finally,
Python is portable across all major hardware and software platforms. Python is
ideally suited for rapid prototyping of complex applications. It is also used as a
‘glue language’ for connecting up the obvious pieces of a complex solution,
such as Web pages, databases and Internet sockets. Best of all, Python is easy
to use.

Following is a comparison of programs written in C++, Java and Python. The
programs take two inputs (integers) from the user, add the numbers, and then
print out the answers.

C++

#include <iostream>
using namespace std;

int main()
{
 int A, B;
 cin >> A >> B;
 cout << A+B;
}

24 Fitina, From C++ to Python

Java

Python

Clearly the program in Python is the shortest and takes less time to write. The
syntax is considerably easier to understand than either C++ or Java. The C++
syntax is intimidating to first year DWU students; but the Java syntax would be
simply baffling. In addition to easy syntax, it is very easy to program graphics
with Python. In C++, doing graphics in a first year course is ‘uncommon’. One
reason is that C++ does not have a default graphics library (Gibbons, 2002).
The following Python program draws a circle inside a window:

The program The result

import java.io.*;
public class Addup
{
 static public void
main(String args[]) {
 InputStreamReader
stdin = new
InputStreamReader(System.in);
 BufferedReader console
= new BufferedReader(stdin);
 int i1 = 0,i2 = 0;
 String s1,s2;
 try {
 s1 =
console.readLine();
 i1 =

a = input()
b = input()
print a+b

import java.io.*;
public class Addup
{
 static public void
main(String args[]) {
 InputStreamReader
stdin = new
InputStreamReader(System.in);
 BufferedReader console
= new BufferedReader(stdin);
 int i1 = 0,i2 = 0;
 String s1,s2;
 try {
 s1 =
console.readLine();
 i1 =

Contemporary PNG Studies: DWU Research Journal Volume 11 November 2009 25

Writing programs to make things ‘move’ around the screen is a good way to
learn ‘loopy’ structures like the ‘for’ and ‘while’ loops. Again Python makes
this very easy. Students can experiment with 3-D graphics as well as 2-D.
Python has modules for incorporating multimedia objects like sound, images
and movies. Students can experiments with manipulating the objects and in the
process learn about the properties of these objects.

Python is growing in popularity (Goldwasser, 2008) and is likely to become the
language of choice for more and more institutions throughout the world. DWU
may be the first university in PNG to adopt the language. It may also be the
first to benefit from the simple, easy to use but very power language.

References
Gibbons, Thomas E. 2002, Using Graphics in the First Year of Programming

with C++,
http://www.cs.uni.edu/~fienup/mics_2002/proceedings/papers/gibbons.
PDF

Goldwasser, Letscher 2008, Using Python To Teach Object-Oriented
Programming in CS1, PyCon
http://euler.slu.edu/~goldwasser/publications/pycon2008.pdf

Kioskea (en.kioskea.net) 2008, Programming Languages,
http://en.kioskea.net/contents/langages/langages.php3

Kölling, Michael 1999, The design of an object-oriented environment and
language for teaching, Phd thesis, University of Sydney.

McIver, Conway 1996, Seven Deadly Sins of Introductory Programming
Language Design, Proceedings of the 1996 International Conference on
Software Engineering, Education and Practice.

Reynolds, John C. 2008, Some Thoughts on Teaching Programming and
Programming Languages, Proceedings of the SIGPLAN Programming
Language Curriculum Workshop, SIGPLAN Notices, 43(11), November
2008, pp. 108-110.

Tiobe 2009, Most Popular Programming Languages, Tiobe.com

Author

Lakoa Fitina
Senior Lecturer
Head, Department of Mathematics and Computing Science
Divine Word University
Madang, Papua New Guinea
Email: lfitina@dwu.ac.pg

http://www.cs.uni.edu/~fienup/mics_2002/proceedings/papers/gibbons
http://euler.slu.edu/~goldwasser/publications/pycon2008.pdf
http://en.kioskea.net/contents/langages/langages.php3
mailto:lfitina@dwu.ac.pg

