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Human Development Index: PNG progress and a 

simulated interpretation 

 

 Peter K Anderson   

 
Abstract 

The Human Development Index attempts to measure 

human well-being and its development over time in 

multiple countries across the world. Relative values of 

this index seem to possess an undesirable inherent 

stability with little indication of the removal of 

inequality. Monte Carlo simulation is used to explore 

possible causes of this stability. Where collected 

historical data can be best-fitted to a particular 

theoretical distribution, some of the inherent properties 

of the data can be revealed. Per-capita Gross National 

Income data is at least visibly consistent with a 

Lognormal probability distribution suggesting that 

poverty may be the result of multiplicatively 

interdependent factors.  Thus there may be a certain 

inevitability that, without special intervention, the rich 

will become richer and the poor, poorer. 
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Introduction 

 

Well known probability or frequency distributions arising from  

those used in statistics model the behavior of random variables 

whose characteristics are known. These variables arise from 

various real world situations. When a particular distribution can 

be fitted to a set of empirical data, the distribution is commonly 

used to make predictions about probable future behavior of the 

system generating the data. However, the fitting can also be used 

to suggest assumptions about the origin or causes of the empirical 
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data based on knowledge of characteristics of the variable giving 

rise to a particular distribution (e.g. Hahn & Shapiro, 1967). 

 

After exploring the origin of the lognormal distribution using 

Monte Carlo simulation, this paper reviews some of the data 

recorded in the Human Development Reports (HDR) developed 

over the past two decades. It notes the relative progress of PNG 

and its near neighbors on the Human Development Index (HDI). 

The perceived lack of progress relative to more developed 

countries in the same region leads to the examination of one of 

the several factors, the per capita Gross National Income (GNI), 

from the perspective of its empirical data fit to the lognormal 

distribution. The assumption is made that if empirical random 

data from an entity can be fitted to a particular distribution, 

hypotheses may be established concerning the underlying natural 

or other causes of the behavior of the entity. 

 

Human Development Index (HDI) 

 

The HDI is a composite statistic intended to be a holistic measure 

of human wellbeing calculated from data collected annually by 

the United Nations Development Program (UNDP) for each 

country in the world where data is available. The information 

compiled includes data on aspects of human and economic life 

such as life expectancy, achieved educational levels, reduced 

maternal mortality rates, measures of poverty and health, all as 

indicators of standard of living. These measures of human well-

being are combined with per capita GNI, a quantitative measure 

of national economic growth, to produce the HDI, a ranking index 

ranging from approximately 0.3 (the low human development 

group) to nearly 1 (the very high human development group) for 

advanced countries. As data is collected annually, changing levels 

of estimated human development or wellbeing can be tracked for 

the 186 countries for which data is available. 

 

The world map of Human Development Index (Figure 1) in 2013 

(The Human Development Index: Wikipedia and based on HDR 

(2013), Table 1, p 144) identifies a general disparity in HDI 

values on a world map. The North (darker colours) South (lighter 



Submission for Contemporary PNG Studies: DWU Research Journal Vol. 21November 2014 3 

 

colours cutting a diagonal swathe from left to right) division is 

apparent. Australia and New Zealand provide an interesting 

anomaly, being “high human development” countries in the far 

south and their relative geographical locations support the 

comparisons made in the paper. 

 

 

  Very High   Low 

  High   Data unavailable 

  Medium 
 

 
Figure 1 World map by quartiles of Human Development Index in 2013 (The 

Human Development Index: Wikipedia) showing the North (darker colours) 

South (lighter colours cutting a diagonal swathe from left to right) division and 

based on HDR (2013), Table 1, p 144. 

 

The limitations of HDI, an index from easily measured quantities, 

as a measure of the quality of human life are readily 

acknowledged. “…. human well-being and freedom, and their 

connection with fairness and justice in the world, cannot be 

reduced simply to the measurement of GDP and its growth rate” 

(UNDP, p 24). Thus there is a need to avoid a reductionist 

approach which would equate human wellbeing completely with 

these easily measured indicators. Despite this acknowledged 

limitation, this paper assumes that the HDI data is still useful and 

proceeds to make best use of its availability. 

 

In 2012, Papua New Guinea (PNG) ranked 156 out of the 186 

ranked countries and is classified as a country of “low human 

development” (Human Development Report, 2013, Table, p 144). 



4 Anderson, Human Development Index: PNG progress and a simulated interpretation 

 
 

 

Neighboring Solomon Islands (SI) was ranked 143, but still 

within the same low human development group. These rankings 

can be compared with those of Australia (rank 2) and New 

Zealand (rank 6), other near neighbors and sources of overseas aid 

for PNG who are ranked in the “very high development” group on 

the HDI. The disparity between these countries could hardly be 

much greater. PNG has, however, shown some limited 

improvement in HDI (Figure 2 and Table 1) with its HDI ranking 

growing from 0.324 (1980) to 0.466 (2012). Despite this upward 

trend, there has been a downward trend in growth rate (Figure 3) 

as measured over consecutive 10 year periods and as indicated by 

the decreasing slope of the plotted lines from 1980 to 2012.  

 

 

Figure 2 HDI Growth curves compared 

between selected countries in the Pacific 

region show little change in relative 

positions over time. 

 

Figure 3 HDI differences compared 

as in Figure 1 showing little change 

in differences despite decades of 

overseas aid. 

. 

 1980 1990 2000 2005 2007 2010 2011 2012 

Aus. 0.857 0.880 0.914 0.927 0.931 0.935 0.936 0.938 

NZ 0.807 0.835 0.887 0.908 0.912 0.917 0.918 0.919 

SI   0.486 0.510 0.522 0.522 0.526 0.530 

PNG 0.324 0.368 0.415 0.429 0.429 0.458 0.462 0.466 
 

Table 1 Growth in HDI values for selected neighbouring countries in the 

Pacific showing progressive relative development (HDR, 2013, Table 2 p148). 

Whilst there have been changes in the method of HDI calculation over the 

years, the data presented here has been recalculated according to the most 

recent method. 
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HDI differences between these counties are quite stable 

(relatively flat plotted lines in Figure 3 and data in Table 2) 

showing little evidence of reduction of HDI disparity countries 

classified with “low human development” and their higher 

ranking neighbours despite decades of aid from the latter. This is 

here interpreted as suggesting that there might be other factors 

operating to produce these apparently stable disparities. 

 

 1990 2000 2005 2007 2010 2011 2012 
Aus-PNG 0.512 0.499 0.498 0.502 0.477 0.474 0.472 
Aus-SI 0.394 0.428 0.417 0.409 0.413 0.414 0.408 
SI-PNG 0.118 0.071 0.081 0.093 0.064 0.060 0.064 
NZ-PNG 0.467 0.472 0.479 0.483 0.459 0.455 0.453 

 

Table 2 Differences in HDI values for selected neighbouring countries in the 

Pacific showing only very small convergence of HDI values between 

neighbouring Pacific Island countries (calculated from data supplied in HDR, 

2013, Table 2 p148).  

 

Possible factors influencing HDI 

 

The hypothesis of this paper is motivated by the way in which 

factors affecting HDI appear to be compounded as suggested in 

the HDR (Human Development Report 2013). The report notes 

that:  

“Environmental threats …. and natural disasters affect 

everyone, but they hurt poor countries and poor communities 

the most” (HDR Overview, p6).  

 

It is further noted that: 

 “Although low HDI countries contribute least to global 

change, they are likely to endure the greatest loss in annual 

rainfall and sharpest increase in its variability … with dire 

consequences for agricultural production and livelihoods” 

(HDR Overview, p6) 

 

as a result of this change. These observations are consistent with 

the well-known observation that "the rich get richer and the poor 

get poorer" seemingly as a quite natural consequence of being 

where they are.   
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These perceptions suggest that causative factors of HDI values 

may be multiplicative meaning that the value of a human 

development variable at any time is proportionate to its value at a 

previous period of time. Thus a negative impact on a national 

economy will hurt poor counties more than those that are wealthy. 

If causative factors combine in such a multiplicative manner, the 

lognormal distribution suggests itself as a possible statistical 

model to fit the empirical data listed in the HDR. 

 

Lognormal Distribution 

 

When a random variable is the total effect of a large number of 

qualitatively different interacting factors, such that the influence 

of one factor is proportional to the magnitude of the other factors, 

the variable displays a lognormal distribution (Aitchison & 

Brown, 1969; Crow & Shimizu, 1988). This is in contrast to the 

well-known normal distribution in which the randomly varying 

contributing factors are independent and simply add together 

without interaction. With the lognormal distribution, the 

contributing factors are known to multiply rather than add 

together. 

 

As an example of interacting factors, consider a variable x as the 

time for human recovery after a medical operation (cf. Lawrence, 

1988). Influencing factors might be seriousness of the operation 

(SO), age of patient (AP) and state of health (SoH) of the patient. 

The effect of AP is reasonably dependent on SO (e.g. being 

greater for more serious operations) or on SoH and so on. Such 

more elementary variables, therefore, combine their influence in a 

multiplicative, rather than an additive way (as noted with the 

normal distribution).  

 

Thus, if T0 is the recovery time for a patient after an average 

operation: 

T1 = T0 + 1T0  = T0 (1 + 1) 

 

where 1 is a random proportion of T0 for the effect of SO; 

 

T2 =  T1 +  2T1 = T1 (1 + 2) = T0 (1 + 1) (1 + 2) 
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and where 2 involves the effect of AP. Similarly, we can write: 

 

T3 = T2(1 + 3) = T0 (1 + 1) (1 +  2) T2(1 + 3) 

 

indicating the multiplicative effect of the factors influencing the 

time of recovery after an operation. 

 

In general the multiplicative effect can be represented as: 

 

Tj = Tj-1(1 + j) or Tj - Tj-1 = jTj-1  (1) 

 

which is a recurrence relationship where epsilon j is a random 

proportion of Tj-1, the index j is an integer ranging from 1 to n, and 

Tj is a variable (recovery time in this example) resulting from n 

multiplicative effects. This embodies what is known as the law of 

proportionate effect: the change in the value of a variable at any 

step of the process is a random proportion of the previous value of 

the variable (Aitchison & Brown, 1969: 22) working back 

through previous steps in a first order recurrence sequence.  

 

Variables resulting from such multiplicative effects of many 

small, qualitatively different, elementary variables may be 

transformed into normal random variables with the natural 

logarithm, ln(x), function (in which multiplicative effects become 

additive) and ln(x) is distributed as N(,
2
) where N denotes a 

normal distribution with mean  and variance 
2
 . The form of the 

function:  

 

 where z = (ln(x) - )/    (2) 

 

has a shape characterised by positive skewing, a peak near zero, a 

lower bound on the x axis, and the mode and median score falling 

below the mean. The parameters  and  are, respectively, the 

mean and variance of the normal distribution which would be 

obtained by considering the natural log of the X variable values 

(ln x). For the lognormal distribution the corresponding 

parameters are: expected value: exp(+0.5
2
), variance: (exp(

2
-

1)exp(2+
2
), mode: exp(-

2
) and median: exp .  
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The effect of these parameters is firstly to explain the positive 

skewing given that the expected value, mode and median are all 

different and so separated. Secondly they allow considerable 

variation in possible patterns of data that the lognormal function 

(2) can fit. The parameter σ functions as a scale parameter (Figure 

4, where µ is kept constant) and µ as a position parameter (Figure 

5, where σ is kept constant). This suggests that there is a strong 

possibility that some form of the lognormal function may be 

found to fit empirical data characterised by a lower limit of zero 

and typically small rather than large values. 

 

 
Figure 4 Variations in Lognormal 

distributions as the scale parameter σ 

varies (= 0.1, 0.2, 0.3 & 0.7) with 

position parameter µ (=0) constant. 

Figure 5 Variations in Lognormal 

distributions as the position parameter 

µ (= 0, 0.3, 0.7, 1) varies with scale 

parameter σ (=1) constant. 

 

A modeling example 

 

For purposes of modeling of the origin of lognormal distributions, 

a Monte-Carlo method (Manno, 1999) of simulating such a 

distribution using random variables was used with both a 

spreadsheet (Excel, 2010) and the R platform for data analysis 

(Kabacoff, 2011). The simulations considered 5000 theoretical 

income earners, with initial wealth I0 ($1000), being rewarded 

with 30 periodic incomes, each of which was a proportion of the 

income from the previous period.  

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.5 1 1.5 2 2.5 3 3.5 4

Scale Parameter

0,0.2 0,0.3 0.0.7 0,1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3 3.5 4

Position Parameter

0,1 0.3,1 0.7,1 1,1



Submission for Contemporary PNG Studies: DWU Research Journal Vol. 21November 2014 9 

 

The total accumulated wealth for each earner, from the law of 

proportionate effect (see (1) above), is given by: 

 

In = I0(1+r1)(1+r2)……..(1+rn), (3) 

 

for n periods of income earning. For the spreadsheet simulation 

the random proportion value ri was generated with the 

RANDBETWEEN  function as in the following: 

 

Xj =Xj-1*(1 + RANDBETWEEN(1,10)/10). 

 

The effect of this function as displayed here is to generate an ri 

value uniformly distributed between 0.1 and 1. The final result (in 

column 31) was then divided by an appropriate power of 10 to 

produce a number between3 and 5 digits. The effect of this 

simulation was to produce a characteristic lognormal distribution 

(Figures 6 & 7) with large positive skewing and a preponderance 

of small values. The strong positive skew shows how initially 

equal wealth units become separated with time as a result of 

purely random effects. 
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Figure 6 Simulated frequency wealth 

data for a theoretical set of income 

earners where yearly income is a random 

fraction of the previous year’s income. 

Figure 7 Cumulative frequency data 

resulting from the simulation as 

described for Figure 6. 
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The simulated data (red) appears to quite closely fit the 

corresponding lognormal theoretical distribution, a closeness to 

be explored later in the paper. 

 

A second simulation was carried out using R programming  

(Kabacoff, 2011), an open source scripting language. A script (see 

Appendix: R Source Code) was used to generate random incomes 

but this time the proportion variable (ri) was drawn from a 

standard normal distribution (rather than the evenly distributed 

random distribution used with the spreadsheet simulation). 

Because this variable can take positive and negative values, all the 

standard increments were multiplied by a factor of 3% before 

addition to prevent negative incomes. Such a factor could 

conceivably correspond to common interest rates, a base rate at 

which money could accrue.  
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Figure 8 Histogram of data simulated 

using a standard normal distribution to 

model the fraction of the previous year’s 

income. The red line shows a best fit 

lognormal frequency distribution. 

Figure 9 qqPlot of quantiles for 

simulated data (y axis) and theoretical 

distribution (x axis) falling with most 

points lying between the red  95% 

confidence interval lines. 

 

The R script also generated a frequency histogram for 5000 

income earners after 30 income earning periods (Figure 8) with a 

best fitting lognormal curve shown as an apparently well-fitting 

overlay. Also confirming a lognormal fit to the data is the 
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Quantile - Quantile plot (qq Plot in Figure 9) used to determine if 

two data sets come from populations with a common distribution. 

 

Figure 10 Comparative frequency 

distributions, simulated and theoretical, 

from a 5000 run simulation using data 

generated using the R script. 

Figure 11 Comparative cumulative 

frequency distributions, simulated and 

theoretical, from a 5000 run 

simulation. 
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Figure 12 Comparative frequency 

distributions, simulated and theoretical, 

from a 10000 run simulation using data 

generated using the R script. 

Figure 13 Comparative cumulative 

frequency distributions, simulated and 

theoretical, from a 10000 run 

simulation. 
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the same distribution, plotted points should fall on the 45
o
 

reference line which they clearly do in this simulation with most 

points lying between the 95% confidence lines shown in red.  

 

Further graphic displays (Figures 10 to 13, using the Input 

Analyser display tool from Arena simulation software (Kelton et 

al., 2010) show the relation between simulated data (red lines) 

and corresponding theoretical lognormal distributions (blue lines). 

For reasons which are not presently clear, these graphs show a 

somewhat poorer closeness of fit than do those obtained from the 

R script (Figure 8), although running the simulation for 10000 

cases (Figures 11 & 12) does show a visible improvement on the 

simulation run for 5000 cases only (Figures 10 & 11). 

 

However simplistic this modeling as a simple random process 

(Aitchison & Brown, 1969: 116) may appear (e.g. income earners 

do not usually possess equal initial wealth), there does appear to 

be supportive visual evidence that such a dynamic as modeled 

here is active as a discussion of results of the per capita Gross 

National Incomes in the HDR would also suggest.  

 

Modeling per capita GNI  

 

World per capita GNI data for 1995 and 2011 are available (HDR, 

2013) for consideration as lognormal distributions. Some 

summary data (Table 3) shows the scale of variation in the  

 

 GNI Data 1995 GNI Data 2011 

Average $6949.58 $12700.93 

St. Dev. $7264.12 $13794.91 

N 174 181 

Aus. $19632 $34548 

NZ $17627 $24818 

SI $2230 $2581 

PNG $2500 $2500 
 

Table 3 GNI data for 1995 and 2011 are compared for all counties for which 

data was available and for comparison between the countries previously 

discussed.  
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Countries discussed earlier to show disparities and relative 

locations of developing countries.  

 

The GNI data sets also show the lognormal characteristic of a 

positively skewed distribution (Figures 14 & 15 for 1995 data and 

Figures 16 & 17 for 2011 data) consistent with outcomes resulting 

from multiplicative effects discussed previously. Actual values 

(red lines) from most of the 186 countries which have received a 

HDI ranking and for which GNI data was available, were sorted 

into 40 intervals chosen for optimum histogram display (using the 

previously mentioned Input Analyser utility). The total numbers 

of scores are shown in Table 3. Best fitting theoretical lognormal 

functions (blue lines) to the empirical data provide visible 

indication of goodness of fit. Both frequency functions (Figures 

14 and 16) and cumulative frequency functions (Figures 15 and 

17) provide reasonably confirming visibility tests for the claim of 

lognormal fitting to the GNI data. 
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Figure 14 Frequency distribution of 

1995 per capita GNI data with the red 

curve indicating the empirical data and 

blue the closest fit lognormal curve. 

Figure 15 Corresponding cumulative 

frequency distribution of 1995 per 

capita GNI data. 

 

Comparison of the two sets of data (1995 & 2011), at least for the 

frequency (probability) functions, tends to suggest, at least from 

visibility, an improved fit for the 2011 data. 
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Figure 16 Frequency distribution of 

2011 per capita GNI data with the red 

curve indicating the empirical data and 

blue the closest fit lognormal curve. 

Figure 17 Corresponding 

cumulative frequency distribution 

of 2011 per capita GNI data. 

 

Whilst the visibility tests provided so far might be reasonably 

convincing, statistical tests are also available for more objective 

confirmation of any possible claims which might be made for 

these distributions.  

 

Other candidate distributions 
 

Simulation  1995  2011  

Function Sq. 

Error 

Function Sq Error Function Sq Error 

Lognormal       0.000671 Weibull 0.00546 Beta  0.00236 

Weibull   0.00252 Gamma   0.00576 Weibull  0.00395 

Gamma 0.00323  Erlang  0.00742 Lognormal  0.00435 

Erlang  0.00325 Lognormal 0.00926 Gamma   0.00446 

Beta    0.0174 Beta  0.0126  Erlang  0.0146 

 

Table 4 Various asymmetric distributions fitted to simulated and HDI data 

with an error term (mean square error) indicating the closeness of fit. The 

results for the simulation data come from the 5000 run spreadsheet generated 

cases.  

 

It needs to be acknowledged that there are numerous other 

statistical distributions which model positively skewed data such 

as the HDI data discussed in this paper. Relative degree of fittings 
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of the data to candidate distributions can be estimated with a 

mean square error term (Sq. Error in Table 4, with error terms 

generated by Input Analyser referred to previously)  

 

Clearly, whilst the simulated data is best fitted with the lognormal 

distribution, there are other distribution functions which provide 

better fits to the HDI 1995 and 2011 empirical data than the 

lognormal despite the positive indications of the “visibility tests” 

referred to above. Thus, whilst the lognormal distribution may not 

provide the best fit, further tests can be applied to determine if the 

data is at least consistent with that distribution.  

 

Statistical tests for Goodness of Fit 

 

In the statistical tests conducted here, the following notation is 

used: 

 

Ho: (Null Hypothesis) the data follow the lognormal distribution 

HA: (Alternative Hypothesis) the data do not follow the lognormal 

distribution 

 

We assume the null hypothesis (Ho) that the pairs of data sets 

(simulated & empirical) come from the same theoretical 

distribution (lognormal) and then apply statistical tests such as the 

Kolmogorov-Smirnov (KS) Test and the Chi-Squared (χ2) 

goodness of fit test which are conveniently available. These tests 

are used to determine if sample data are consistent with a 

specified distribution function, in this case empirical data with the 

lognormal distribution. 

 

The p-values obtained from these tests provide an estimate of the 

probability of obtaining a test statistic (a measure of the 

difference between the empirical data and the fitted distribution) 

as extreme as that obtained, under the null hypothesis (Ho) that all 

data sets (in this case the best fitted lognormal distribution and, in 

turn, each of the two empirical data sets) come from the same 

distribution.  

 

It is clear from the results provided (Table 5) that p-values are 

small compared with minimum values of p (> 0.1) required for 
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the null hypothesis to be supported. Thus the null hypothesis is 

consistently rejected and the tests cannot support the null 

hypothesis that any of these sets of data are best described by the 

lognormal distribution to a required confidence level. 

 
 Simulated data Empirical (1995) Empirical (2011) 

Test Test 

statistic 

p-

value 

Test 

statistic 

p-

value 

Test 

statistic 

p-value 

K-S 0.0227 0.0123 0.0941 0.0892 0.0976 0.0622 

Rejection 

level 

  strong  Low  Low 

Data points 5000  174  181  

χ2 32.1 0.0324 19.1 <0.005 21.3 <0.005 

DoF 19  6  6  

Rejection 

level 

  strong  Very 

strong 

 Very 

strong 

 
Table 5 Results of statistical tests (Kolmogorov-Smirnov (KS) and Chi-

Squared (χ2)) used to determine if data can be confirmed as being well 

modeled by the lognormal distribution. The results for the simulation data 

come from the 5000 run spreadsheet generated cases.  

 

Thus the hypothesis of this paper that the empirical data follows 

the lognormal distribution and that multiplicative effects (law of 

proportionate effects discussed earlier) are a factor in worldwide 

HDI data is left to be supported only by the “visibility tests” and 

the general observations (HDR Overview p 6 quoted above) of 

the unequal effects of adverse conditions on poor countries. It 

should also be noted that the tests applied above may use criteria 

that are too conservative (as suggested by the strong support of 

the “visibility tests” referred to earlier) and so may hide the 

appearance of real effects. 

 

Conclusion 

 

Probability or frequency distributions exhibit intimate 

relationships which make explicit their properties, underlying 

assumptions and the nature of the causes which produce such 

distributions in real systems. Knowing the physical and other 

characteristics of an entity exhibiting random behavior, a suitable 

choice of distribution function may be made to model that 
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behavior. If empirical data on an entity such as HDI data can be 

fitted to a particular distribution, hypotheses may be established 

concerning the underlying causes of the behavior of the entity. An 

application of this has been made by suggesting possible 

hypotheses concerning causes of empirically determined HDI data 

by attempting to fit that data to a lognormal distribution. 

 

Attempt at this data fitting was motivated by observations in the 

HDR (2013) consistent with the operation of multiplicative 

factors in determining relative HDI values across many countries 

for which data is available. Whilst visibility data (Figures 6 to 18) 

seemed to support the hypothesis of the paper, the more objective 

statistical tests did not. 

 

Further questions to be explored using the process described in 

this paper could include investigating possible prevailing factors 

influencing GNI, and how might they be taken account of in a 

simulation. For example, consideration could be given to possible 

effects on the GNI of various deterministic factors such as 

whether a country is landlocked, experiences high levels of 

corruption, or is Muslim. 

 

Finally, the world community is still left with the problem of a 

highly skewed distribution of measures of human wellbeing with 

large disparities between even neighboring countries. Without 

redistribution of wealth by taxation, which is possible within a 

nation, perhaps the nations of the world need to take seriously the 

notion of the periodic application of international debt relief, to 

overcome the inexorable effects of what at least has the 

appearance of a lognormal process. 
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Glossary 

 
GNI  Per capita Gross National Income 

HDR  Human Development Report 

HDI  Human Development Index 

KS  Kolmogorov-Smirnov Test 

PNG  Papua New Guinea 

SI  Solomon Islands 

UNDP  United Nations Development Project 

χ2  Chi-Squared Goodness of Fit Test 

 

R Source Code 

 
# Simulation of 30 increments 

added over time to a capital of 

$1000  

library(distr) library(MASS) 

library(car) 

n <- 30;         # no of increments N 

<- 5000;       # no of simulations 

mult.fac <- 0.03 # needed to 

prevent negative incomes 

 

# storage matrix for random 

normal variates, mean = 0, sd = 1  

stoch.incr <- matrix(rnorm(N*n, 0, 

1),nrow = N, ncol = n) 

 

# storage matrix for generated 

incomes - to be overwritten 

I <- matrix(0, nrow = N, ncol = n + 

1) 

I[ ,1] <- 1000 # initial income 

$1000 in col 1 of I 

 

# set the random generator so 

the results are reproducible 

set.seed(1271)  

 

#  simulation  

 for(i in 1:n){ 

 I[ ,i + 1] = I[ ,i]* (1 + 

mult.fac*stoch.incr[ ,i])  

              } 

 

#Result is a 5000 row 31 column 

matrix 

I.final <- I[ ,n+1]# column 31 is 

the final 5000 incomes 

hist(I.final) # shows the histogram 

of simulated data 

 

# results for I.final written to file 

setwd("E:/Res_2014/SimulatedDat

aR/Run5000") 

filename <- 

"E:/Res_2014/SimulatedDataR/Ru

n5000/Rsim.csv" 

write.table(I.final, file = filename, 

sep = ",") 

 

# find the mean and sd of a 

lognormal curve fitting # the 

simulated data: respectively 

meanlog,sdlog 

lnorm.fit <- 

fitdistr(I.final,"lognormal")  

meanlog <- 

lnorm.fit$estimate["meanlog"]  # 

6.895 

sdlog   <- 

lnorm.fit$estimate["sdlog"]    # 

0.1664 

 

# 1. Comparison with a 

lognormal distribution: generate 

10000 random lognormal 

variates from a distribution of 

mean = meanlog, sd = sdlog 

lnrv = rlnorm(5000,meanlog,sdlog) 
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# combine histogram and density 

lines 

hist(I.final, prob=T)  # various 

options for histogram not used 

lines(density(lnrv), col="red") 

 

# QQplot of simulated data and 

theoretical lognormal 

qqPlot(I.final,dist= 

"lnorm",meanlog=lnorm.fit$estima

te["meanlog"], 

sdlog=lnorm.fit$estimate["sdlog"], 

xlab=”Theoretical Quantiles”, 

ylab=”Simulated Quantiles”) 

 

 

 


