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Abstract  
The invariance of the exponential function under successive levels of 

differentiation is explored. Invariant functions for up to 5 levels of 

differentiation are determined. Some examples which leverage this 

invariance property are discussed. By contrast, the Gaussian function exp 

(– x2) is shown to be diverse when compared with the original function 

rather than under invariant under similar differentiation. Similarly, results 

for the moment generating function for the normal distribution are diverse 

except under very limited conditions. 
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Introduction  

 

The exponential function ex is a unique function because the derivative of the 

function is the same as the function or alternately we can state that it is 

invariant under differentiation, in fact, under repeated differentiations. Having 

this property makes it both unique among the known functions and also one of 

the most important functions in pure and applied mathematics.  

 

This paper will derive the invariant property and illustrate its use in modelling, 

growth and decay of physical and biological situations to motivate further 

exploration of invariant functions with respect to their variables up to six levels 

of differentiation. At the second level, an application of the Ordinary 

Differential Equation (ODE) will be made to model vibrating systems to 

motivate exploration of further levels. Similar invariance or otherwise will also 

be investigated for related functions: e – x and 
2xe

. 

 

Unique property of the exponential function ex 

 

The exponential function ex is a unique function because the derivative of the 

function is the same as the function. We consider f (x) to be a function such 

that: 

d f (x)/dx = f (x), 

 

which can be alternatively presented (treating the derivative as a differential 

and cross multiplying) as: 

 

d f (x) / f (x)  =  dx. 
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Integrating both sides with respect to their respective variables, we have: 

         ln  f  =  x,      (1) 

 

which can be written equivalently as:  

 

f (x)  =  ex. 

 

Allowing for an arbitrary constant, c, in the right hand side of (1) after 

integration, we obtain a general function:  

 

e x + c  =  ex. ec     = b.ex, 

 

where  b = ec  is a constant. 

 

We can also notice that it follows that the derivatives of any order of the 

function ex will also remain the same. Thus we can write:  

 

   Dn ex  ≡  d n ex/dxn  =  ex,     (2) 

 

where D is treated as an operator d /dx and n is a whole number. 

 

Alternate derivation 

 

This result can also be obtained by considering ex as defined by the power 

series expansion: 
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Then, by taking derivatives of both sides of the equation, we have:  
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thereby, confirming (2) for n = 1, since this process can be repeated n times 

always with the same result. Thus, we can conclude that the function ex remains 

invariant under differentiation of any order. 

 

Significance of uniqueness property 

 

Exponential ex is one of the most important functions in pure and applied 

mathematics because of this very important uniqueness property: 
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d ex /dx  =  ex, 

 

which can be interpreted as the rate of growth at any point (e.g. in time) of the 

function being equal to the value of the function at the point. Thus, it can be 

used in first order linear differential equations [5] to model many bio-logical 

and other systems where individual or population growth (or decay) rate 

depends on the present state (e.g. size) of the system.  

 

We also note that y = ex  is the solution to the differential equation dy/dx = y. 

Further, if f (x) = c. ekx where c and k are arbitrary constants then: 

dx

kxd

kxd

ced
xf

kx   

)(

)(
)('    = k c ekx = k f (x). 

Here, c is an arbitrary constant making f (x) = c.ekx a general solution to the 

ODE  d f /dx = f . 

 

Because of the widespread usefulness of this exponential function, we now 

explore the behaviour of some related functions. 

 

Function with invariant 2nd order derivatives 

 

We now seek to demonstrate similar properties of the function,    e – x, the 

reciprocal of ex, as the only other function whose derivatives and integrals are 

the same. We consider f (x) to be a function such that: 

d f /dx = ∫ f (x)dx, 

 

which can also be presented, after taking the derivative of both sides, as: 

 

D2 f = d 2 f /dx2 = f (x),  or,   (D2   1) f (x) = 0.  (3) 

 

Here, we have a linear second order Ordinary Differential Equation (ODE). 

Results obtained so far suggest we try a solution of the form eλx, where λ is a 

parameter.  The equation (3) then becomes: 

 

(λ2   1) eλx  =  0. 

 

Since eλx ≠ 0, we have an auxiliary or characteristic equation:  

 

(λ2    1)  =  0, 

 

which has two real roots: λ = ± 1. Hence, the most general solution of ODE (3) 

can be written as: 

       f (x) = C1 ex + C2 e – x,       (4) 

 

for e x  and e – x being linearly independent functions, and C1 and C2 are arbitrary 

constants to be determined by initial conditions. Considering C1 = 1 and C2 = 0, 

as special cases, we obtain the solution ex; and for C1 = 0 and C2 = 1, the second 

solution e – x. 
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Thus, the ODE (3) for the function e – x becomes an alternate version of the ODE 

(2) for the function e – x, when n = 2.  

 

We can now claim that the exponential function ex and its reciprocal e – x are the 

only functions whose second order derivatives remain the same. 

 

Further functions involving ex 

 

We now consider special functions obtained from (4) by setting values of the 

constants C1 = ± C2 to 1/2. These values define the hyperbolic (trigonometric) 

functions:  

 

cosh x ≡ (ex + e – x)/2,        sinh x ≡ (ex – e – x)/2. 

 

We can therefore conclude that the second order derivatives of the hyperbolic 

functions cosh x, sinh x and their linear combinations: 

 

 f (x) = C1. cosh x + C2. sinh x,                  (5) 

 

are also invariant under differentiation.  

 

Application to second order linear ODE 

 

Vibration of damped mechanical systems can be modelled as a second order 

linear ODE with equation given by:  

 

 m x   + c  + k x = 0,          (6) 

 

which represents the set of forces involved in a transient vibration [5]. Here x is 

acceleration (second derivative of position with respect to time),  is velocity 

(first derivative of position with respect to time), and c and k are constants of 

damping and elasticity respectively. Equation (6) can also be written in the 

form: 

 

 x  + k  + ω2
 x = 0,                     (7) 

 

where k = c/m and ω2 = k/m, where ω is the angular velocity. 

  

Here we seek a function which is invariant under the sum of both second and 

first order derivatives. Results obtained so far suggest we try functions of the 

form x = eλt, which on substitution in (7), yield the following characteristic 

equation:  

λ2 + k λ + ω2 = 0.    (8) 

 

This is a quadratic equation in λ with solutions: 

 

  λ  =  – k/2 ± √ (k2/4 – ω2).    (9) 
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There arise three solutions: two real and one complex, leading to three physical 

situations (over damping, critical, and under damping shown in Figures 1, 2 and 

3 respectively) depending on the possible values of the discriminant, k2/4 – ω2, 

as follows: 

(i)  k2/4 > ω2 with two real roots x = c1 e t1 + c2e t2 , 

(ii) k2/4 = ω2 a real double root x = (c1 + c2t)e – k t /2, 

(iii) k2/4 < ω2 two complex roots x = e – kt /2 (A cos ωt + B sin ωt)  

 

leading to decaying vibratory motion (Figure 3). 

 

 
 

 

Figure 1. Over damping from 

2 real roots λ1 and λ2. Damping 

occurs so rapidly that 

oscillation does not occur [1], 

p. 68). 

Figure 2. Critical 

damping from 2 equal 

roots [1], Solution p. 56. 

Figure 3. Under 

damping from complex 

conjugate roots [1], p. 

68. 

 

Functions with invariant third order derivatives 

 

Here we consider the ODE (2), for n = 3, and seek a function f (x), again other 

than ex satisfying the equation: 

 

D3 f  =  f (x), 

 

which can be written as:  

    (D3 – 1) f (x)  =  0,   (10) 

 

with auxiliary equation λ3 –1= 0. This equation has one real root, 1, and two 

complex roots: λ = –1/2 ± (√3/2) i .  

 

Hence, the most general solution of the ODE (10) will be [2], p. 14 

 

  f (x) = C1.ex + C2.e – x /2.cos {(√3/2) x + C3},   (11) 

 

where C1 and C2 are arbitrary constants as previously. Thus, we have that the 

most general functions. with third order derivatives invariant, represented by 

equation (11). Choosing particular values of the constants:  

 

(i) C1 = 1 and C2 = 0, we obtain the special function  ex,  

 

(ii) C1 = 0, C2 = 1 and C3 = 0, we obtain another special function: 

 

e – x /2. cos (x √3/2), 
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which remain invariant under third order differentiation. It can also be noted that 

all even order derivatives of the function e – x also remain invariant.  

 

Thus, we can claim that the most general functions given by equations (4) and 

(5) also possess invariant derivatives of any even order:  

    D2n f (x) = f (x),     (12) 

 

where n is a whole number. Clearly, the special functions ex and its reciprocal 

ones also satisfy equation (12).  

 

Functions with invariant fourth order derivatives 

 

As seen from equation (12), the functions ex and its reciprocal possess the same 

fourth order derivatives. Similar, is the case with their linear combinations given 

by equation (4): 

 

    D4 f (x) = f (x),     (13) 

 

where f (x) is given by equation (4).  

 

It may be easily verified that the exponential functions eix and e – ix also possess 

the same 4th order derivatives. Accordingly, the 4th order derivatives of circular 

(trigonometric) functions: 

 

cos x  ≡  (e ix + e – ix)/2,      sin x ≡  (e ix – e – ix)/2i, 

 

also remain invariant. Thus, we can claim that the 4th order ODE (13) also holds 

for f (x) = cos x, or sin x, or their linear combinations: 

 

f (x) = C1. cos x + C2. sin x. 

 

Functions with invariant fifth order derivatives 

 

Here we seek any functions f (x) other than ex whose fifth order derivatives are 

invariant satisfying the ODE: 

  D5 f  =  f (x),       or   (D5 – 1) f (x) = 0.   (14) 

 

Here the auxiliary equation λ5 – 1 = 0 has only one real root 1, and four complex 

roots. Solving this 5th degree algebraic equation using De Moivre’s theorem 

from trigonometry, we obtain the roots: 

 

λ5  = 1  =  cos 2nπ + i sin 2nπ  =  e2nπi, 

 

and so, taking the 5th root of each side, we have λ = e2nπi/5, where n = 0, 1, 2, 3, 

4. These values of n determine the corresponding values of λ: 

 

λ1 = 1,  λ2 = e2πi/5,  λ3 = e4πi/5 = – e – πi/5, 
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λ4 = e6πi/5 = – eπi/5,     λ5 =  e8πi/5  =  e – 2πi/5. 

 

Hence, we can state the most general solution of ODE (14) as: 

 

f (x) = C1.ex + C2.em
2

.x + C3.em
3
.x + C4.em

4
.x + C5.em

5
.x,  (15) 

 

where C’s again are arbitrary constants and mn replace λn. Assigning particular 

values to C’s, one may also derive ex and other functions as special cases.  

 

Further exploratory work would be required to explore the functions other than 

ex which may possess invariant derivatives of odd orders greater than 5.  

 

Another interesting function, we can similarly investigate, is the well-known 

Gaussian function which is used to plot frequency distributions of populations in 

inferential statistics and which will now be considered. 

 

Gaussian function f (x) = 
2xe

 

Gaussian function 
2xe

(Figure 4) is used in probability theory and statistics to 

model the normal frequency distribution [4]. Computing a sequence of 

derivatives of 
2xe

with respect to x, we have respectively:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D f = d f /dx = – 2x. f (x),     D2 f = (– 2 + 4 x2). f (x), 

 

D3 f  =  (12x – 8x3). f (x),   D4 f = (12 – 48 x2 + 16 x4).  f (x), 

 

we can note their diverse rather than invariant character under successive 

derivation, when compared to the original Gaussian function  f (x). However, it 

is interesting to note the equivalence of the function and its first derivative at the 

point  x = –1/2 where: 

 

f (–1/2)  =  [D f ] x = – 1/2 = e –1/4 = 1/e 1/4. 
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Its successive derivatives at above point are in linear relationship, i.e. 

proportional to f (–1/2) as shown in the following: 

 

D2 f  = – e –1/4,     D3 f  = – 5e –1/4,  D4 f  =  e –1/4,  etc. 

 

Moment generating function of normal distribution  
 

The moment generating function (MGF) f (x), for the normal distribution can be 

written in the simplified form [3], Lesson 9: 

 

f (x) = exp (C1. x + C2. x2),    (16) 

 

where C1 = μ and C2 = σ2/2 are the mean and half the variance of the distribution 

respectively. Factorizing, the product function (16) can be written as: 

 

f (x)  =  exp (C1. x). exp (C2. x2). 

 

For the special cases C1 = 0 and C2 = – 1, f (x) reduces to the previously 

discussed Gaussian function 
2xe

. Further, using C1 = ± 1 and C2 = 0 we have 

the exponential functions also previously discussed. Computing the successive 

derivatives of the function, we have: 

 

D f (x) = (C1 + 2C2. x). f (x), 

 

D2 f (x) = {2C2 + (C1 + 2C2. x)2}. f (x), 

 

D3 f (x) = (C1 + 2C2.x).{6C2 + (C1 + 2C2.x)2}.f (x), etc.  

 

Thus, for general values of the constants C1, C2 there is no linear relationships 

between these derivatives with the function unless C2 is zero. In that case, as 

seen above, the MGF f (x) reduces to a general exponential function exp (C1. x) 

only. 

 

Considering the natural logarithm of the MGF f (x), we have: 

 

ln f  =  C1. x + C2. x2, 

which yields:  

D ln f = C1 + 2C2. x,  D2 ln f = 2 C2, 

 

with further order derivatives being zero for C2 being constant. 

 

Summary and conclusions 

 

Five levels of repeated differentiation have been explored and the invariant 

functions determined (Table 1) showing that they all include the exponential 

functions as components. 
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Table 1. Invariant functions for 5 levels of differentiation have been 

determined. 

 

ODE Invariant Functions 

(D n) f (x) = f (x)    f (x) = ex, invariant for all whole numbers n. 

(D 2 – 1) f (x) = f (x)    f (x) = C1 ex + C2 e – x, C1 and C 2 constants. 

(D 3 – 1) f (x) = f (x)    f (x) = C1 ex + C2.e – x /2.cos {(√3/2) x + C3}, 

(D 4 – 1) f (x) = f (x)    f (x) = (e ix  + e – ix)/2,  f (x) = (e ix  – e – ix)/2i, 

and        f (x) = C1. cos x + C2. sin x 

(D 5 – 1) f (x) = f (x)    f (x)  =  C1.ex + C2.em
2
.x + C3.em

3
.x + C4.em

4
.x + C5.em

5
.x 

 

In general, it has been shown that invariant functions for lower levels of 

differentiation can be obtained as special cases of the functions invariant under 

higher levels of differentiation. By contrast, the Gaussian function 
2xe

was 

shown to be diverse when compared with the original function rather than under 

invariant under successive differentiation. Similarly, results for the moment 

generating function for the normal distribution were shown to be diverse except 

under very limited conditions. 
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