
28 Gunik, Facilitating software development using UML models 

Facilitating software development using UML 

models 

 

Rodney Gunik 
 

Abstract 

The Unified Modeling Language (UML) is a visual language 

which aids in analysis and design of software systems using the 

object-oriented approach. The interesting connections between the 

UML models and the framework the models provide are 

discussed to aid interpretation of problem domains by computing 

science students thereby enabling them to develop conceptual 

models visually to facilitate software development. A theoretical 

student management system is used to demonstrated the 

connections between the models and how they could be used for 

software designs.  
 

Keywords: software development, systems analysis and design, Unified 

Modelling Language, use case, domain class, activity diagram, system 

sequence diagram, sequence diagram, design class diagram, object-oriented 

approach. 

 

 

Introduction 

 

Most computing science units in the Mathematics and Computing Science 

program at Divine Word University are based on software development. 

Students studying these units begin coding by learning how to use proper 

syntax and semantics for a popular programming language. However, 

understanding the problems of software development is a skill required in the 

development of software systems. While this is true for software development, 

Unified Modeling Language (UML) models could be used to analyze and 

design a software before the actual coding. 

 

Students require a well-presented knowledge of how to convert their software 

ideas into coding. As a way of introducing software analysis and design, this 

paper aims to demonstrate the applications of UML models and how they relate 

to the analysis and design of software with the aid of a theoretical example for 

a student management system (SMS). The paper begins with the conceptual 

design by identifying the functional requirements using the use case diagram 

(UCD). Further, domain classes are developed, which define the structure of 

system objects. Activity diagrams (AD), system sequence diagrams (SSD) and 

sequence diagrams (SD) are developed to model the internal behavior of the 

system which serves as a portal for identifying method signatures. Finally, 

design class diagrams (DCD) are developed using the domain models and 

method signatures.   

 



Contemporary PNG Studies: DWU Research Journal Vol. 27, November 2017 29 

Use case 

 

“A use case is an activity that a system performs in response to a request 

conveyed by a user” (Satzinger et al. 2012, p. 69) who is normally a person 

using the system. That user is called an actor because the system could also 

receive request from other systems. The actor is always situated outside the 

automation boundary of the system which is part of the system’s manual region 

(Figure 1). There are two techniques for identifying use cases (user goal and 

event decomposition).  

 

 
Figure 1 A use case diagram where a user is accessing the ship 

item use case from outside the automation boundary (Source: 

Satzinger et al. 2012, p. 81). 

 

With the user goal technique, “users are guided through a series of specific 

questions that identify the tasks users would like to accomplish with the help of 

a system” (Satzinger, et al. 2012, p. 69). This technique is usually applied 

during interviews when gathering requirements from users.  

 

“On the other hand, the event decomposition technique is more comprehensive 

because the process begins by identifying all the events that surrounds the 

system and triggers the system to respond” (Satzinger, et al. 2012, p. 70). The 

response executed by the system as a result of an event leads to a use case. 

 

System requirements (functional and non-functional) (Table 1) are usually 

gathered using the information gathering techniques (e.g. interviews) but USD 

can be used for the requirement modelling process. The requirements could be 

used to define the activities supported by the system. 

 



30 Gunik, Facilitating software development using UML models 

Table 1 Functional and non-functional requirement where the functional 

requirement has one category compared to the non-functional requirement 

(Satzinger, et al. 2012, p. 43).  

 

 
 

“The functional requirements are the activities specified by an organization’s 

business rules and other functionalities that can be accomplished by the 

system” (Satzinger, et al. 2012, p. 42). The non-functional requirements refer 

to the attributes that are used to measure the quality of a system such as 

performance, security and infrastructure. Although its discussion is limited in 

this article, the non-functional requirement is as critical as the functional 

requirement.   

 

“Since a use case defines functional requirements by identifying the actions 

performed by the users” (Satzinger, et al. 2012, p. 69), these actions become 

obvious in a use case description (Table 2). The verb portion of a use case 

identifies the actions taken by the actor to achieve some specific goal. The 

noun portion identifies the system’s object in the problem domain, which 

facilitates the interpretation of real-world objects in the system. 

 

Table 2 The use case description for student management system 

 

 
 

The process of applying use cases to system analysis and design can be 

demonstrated using a SMS (Table 2) and the event decomposition technique. 

This technique can be used to identify all external events that occur during the 

process from adding a student to the system to managing student data. These 



Contemporary PNG Studies: DWU Research Journal Vol. 27, November 2017 31 

events require an action to be taken by an actor from outside the automation 

boundary such as enrolling students, lookup student, view the student name 

list, create grade book, manage student grades and update student information. 

The actors who perform the use cases are listed under the right column and use 

cases under the left column (Table 2). The use cases are also written in the 

verb-noun form in order to facilitate the development of domain classes 

compared to a UCD which are used to develop ADs (Figure 4). The UCD is a 

visual representation of the use cases denoted by ovals and lines indicating the 

association of actors to each use case. This leads us to the domain class model 

which is designed using the nouns from the use case description. 

 

Domain class  

 

“Domain classes are also known as data entities or models that represent 

objects of a system” (Satzinger, et al. 2012, p. 92). They are designed to 

capture and represent data for the objects during a system’s operation. The 

problem domain mentioned in the previous section is a specific area in which 

the scope of a system defines, therefore, real-world objects are captured and 

modeled for that area (Figure 2).  

 

 
Figure 2 The category of things or objects in the problem 

domain is a concept used to identify problem domain objects 

(Satzinger, et al. 2012, p. 93). 

 

There are two techniques used for identifying objects in the problem domain 

(brainstorm and noun technique) (Satzinger, et al. 2012). 

 

The brainstorming technique is used to identify objects through interviews 

designed to discuss the types of objects and processes the users may encounter 

during business operating hours. The noun technique is used to list all the 

nouns a user mentions unintentionally while discussing the process and goals 

of the system. Domain classes can also be identified from the nouns that 

compose a use case description. A list of nouns can be compiled from the 

descriptions during the investigation of use cases. Seizing this approach would 

save time and resources from conducting multiple interviews (Satzinger, et al. 

2012).  

 



32 Gunik, Facilitating software development using UML models 

As mentioned previously, domain class models represent objects of the real 

world, therefore, every real-world object has properties and behaviors. An 

object’s property is also known as attribute which describes the individual 

characteristic of objects that differentiate one from another by determining 

state, appearance and other qualities of the object (Lemay et al, 1996). An 

object’s behavior is anything the object does, which involves actions that are 

stimulated by external factors (Marian Webster, 2017). The only way an object 

could behave is to function for itself or other objects. However, during the 

development of domain class models, emphasis is placed on attribute rather 

than behavior because behavior of objects is made available when interaction 

models are developed.  

 

Classes provide a template for an object and can generate multiple instances 

during runtime. Therefore, during the process of developing domain classes, 

attributes of each of the objects in the problem domain are identified and 

applied to the class model to develop domain class diagrams. Relationships 

between objects of the problem domain are also indicated in a domain class 

model (Figure 3).  

 

Figure 3 The domain classes for the student management 

system which are developed from the use case description. 

 

Using the nouns in a use case description to build domain class models can be 

applied to our theoretical example of the SMS. Every noun in the use case 

description (Table 2) is listed. Careful consideration should be given if the list 

of use case descriptions is lengthy because nouns can have duplicates which 

might duplicate the domain classes such as Student and Classlist in the table. 

Attributes that match the noun title are listed accordingly (Figure 3) with the 

unique attribute such as Student ID and Item ID to be identified for each object. 

Then other attributes such as name, gender, score and DOB are added.    

 

Relationships can be identified using logic and natural language. There can be 

many students in one class list, denoted by (1 and M), one student can have 



Contemporary PNG Studies: DWU Research Journal Vol. 27, November 2017 33 

many grade items (1 and M) and many grade items can be found in one grade 

book (M and 1). Domain class models provide an overview of the various 

objects in the problem domain and how the objects are related to each other. 

This leads to the discussion of the activity diagram. 

 

Activity diagram 

 

“An activity diagram provides investigation into the use case diagram by 

examining the sequence of activity between an actor and use case” (Satzinger 

et al. 2012 p. 57). It is used to identify the sequence of steps that are performed 

to complete a use case. In a UCD, lines indicate actor’s collaboration with a 

use case (Figure 4). However, more information is required to provide details 

about the interaction between the actor and use case as well as how the action 

is conducted in sequences. These developments are initiated so that the use 

case show the interactions and flow of the action taken by the actor to invoke 

the system to respond with some result (Figure 5).  

 

 
Figure 4 A use case diagram for student management system 

with two actors in the role of a teacher and registrar. The student 

role does not associate to any use case. 



34 Gunik, Facilitating software development using UML models 

 
Figure 5 A simple activity diagram for enrol student use case 

which is developed from the use case diagram. 

 

The oval in an AD represents an activity in a workflow (Satzinger, et al. 2012). 

The diamond represents a decision point at which the process can take either 

paths available. The sequences of activities are represented by the arrows and 

the black circles denote the beginning and ending of the workflow. “The heavy 

solid line is called a synchronization bar, which split the flow of activities into 

multiple concurrent path or recombines them at the end of the flow” (Figure 6) 

(p. 57). A swimlane is a column in which each entity that participates in the 

flow of activities are located. 

 

The ADs for each use case in a UCD are developed so that every activity flow 

is modelled. In order to develop activity diagram for the SMS, the UCD in 

Figure 4 is used to select the use cases. Each use case is developed into an 

activity diagram. Figure 5 shows the activity diagram for the enroll student use 

case. Consider the process when a registrar is enrolling a student either 

automatic or manual. The process will be executed in sequence by first entering 

the students name, date of birth, gender, origin and more information about the 

student. The AD indicates sequence of multiple actions between the actor and 

the system, however, in a real system the sequence from Enter Name to Enter 

Origin in Figure 5 could be executed once.  



Contemporary PNG Studies: DWU Research Journal Vol. 27, November 2017 35 

 
Figure 6 The basic symbols for an activity diagram where each of 

the symbols are labelled with quotes for clarification (Satzinger et 

al. 2012, p. 58) 

 

The arrows indicating the sequence of actions that goes back and forth the 

swimlane in the AD require further details. It is now essential to discuss the 

SSD to provide further details about the sequence. 

 

System sequence diagram 

 

“The flow of information between the objects and actor is achieved through 

messages sent from actor to the system or between internal objects” (Satzinger, 

et al. 2012, p. 126). Further developments are done to the AD, which include 

the visibility of information that passes between the user and system. A SSD as 

mentioned above, shows the flow of information such as inputs, outputs and 

interaction between the actor and system.   

 

A SSD employs similar symbols as used in the UCD. A stick figure is used to 

represent an actor which interact with the system, which is viewed as a black 

box bearing the label System (Satzinger, et al. 2012). 

 

A SSD contains two lifelines representing the actor and system. Lifelines are 

indicated by dashed lines extending vertically from the communicating entities 

to indicate the activation time for each entity. Arrows are used to indicate the 

direction of the messages communicated between the actor and object of the 

system (Figure 7). The sequence of messages defined on the SSD is read from 

the top to bottom.  



36 Gunik, Facilitating software development using UML models 

 
Figure 7 A diagram showing basic symbols for system sequence 

diagram where the actor is a clerk and system is seen as a block 

box. Each symbols are labelled with quotes for clarification 

(Satzinger et al. 2012, p. 127). 

 

“The information that passes between the system and actor for execution of a 

task was discovered by the use cases discussed earlier. Labels are placed before 

the input messages to describe the type of input and enclosed with parenthesis” 

(Satzinger, et al. 2012, p. 127). The input messages are composed of attributes 

of the noun found on the message name. The message name uses the verb-noun 

form to project the purpose of the message. The returned messages are 

displayed using a different syntax because they are only for outputs which do 

not require a service to be done by the user. 

 

To further develop the models for the SMS, the activity diagram is used to 

develop a SSD (Figure 8). The input messages are the attributes of the students 

identified in the domain class model because every data entry is specific for 

each attribute. The actor is situated on left lifeline and :System on the right. 

The return message could be displayed as the output on the screen indicating 

the response from the system. Details excluded in the earlier models can be 

added and updates can be done to the previous models. 



Contemporary PNG Studies: DWU Research Journal Vol. 27, November 2017 37 

 
Figure 8 A system sequence diagram for enroll student use case 

where the actor is the Registrar and the system is view as a black 

box. 

 

A SSD is further developed to show that all objects that function together to 

perform a use case are specified. The :System object, which is seen as a black 

box, is usually expanded using the multilayer system design. This is leads to 

the discussion of sequence diagrams. 

 

Sequence diagram 

 

Using multilayer design, a SD is developed by expanding the :System in the 

SSD into system of objects into three layers (view layer (VL), domain layer 

(DL) and data access layer (DAL)) (Satzinger, et al. 2012).  

 

The VL contains objects from the user interface design, which is primarily 

responsible for formatting and presentation data to the users. Inputs are also 

entered, edited and forwarded from the VL of the system. The DL contains the 

objects in the problem domain, which is also referred to as the business logic 

layer because it contains core objects of the use case. The DAL is responsible 

for connection to the database, read and send the data back to the domain 

objects.  Whenever data require saving, the DL pass these data to the DAL for 

writing it to the database. 

 

The SD has symbols for objects, actor, lifeline and activation, messages and 

arrows (Figure 9). The objects on a SD is a rectangle with the object’s name 

and arranged in a timely sequence with reference to the lifeline and activation 

time. The actor is a stick figure, which represents the role of the entities that 

affects the system. The messages maintain the same syntax from SSD and can 

be communicated between the actor and objects or between objects within the 

system. 

 



38 Gunik, Facilitating software development using UML models 

 

Figure 9 A sequence diagram for a create customer use case that 

demonstrate basic symbols for a sequence diagram. Again the 

Clerk is the actor in this sequence diagram (Satzinger, et al. 2012, 

p. 334) 

 

“Lifelines are dashed lines extending from the lower end of objects and actor 

which represents the existence of the entities at a particular time” (Satzinger, et 

al. 2012, p. 334). They indicate the existence of objects by terminating the 

dashed line if destroyed, starting a new dashed line if created or continuing the 

line if the object continues to exist. Activation is shown by a tall thin rectangle 

which indicates that the object is actively existing and duration of the 

activation is indicated by how tall the rectangle extends along the lifeline. The 

incoming message indicates the object is performing some function, therefore, 

activation is indicated by extending right after the incoming message.  

 

In a SD each message has a source and destination object (Satzinger et al. 

2012). When the source sends a message, the destination should be prepared to 

accept the message, which will invoke the destination to initiate some 

activities. The process that initiates an activity on the object is through calling a 

method on that object. Methods specify how the objects behave during their 

lifetime. The activities that are called on the objects are known as method 

signature and are useful in the development of the DCD. 



Contemporary PNG Studies: DWU Research Journal Vol. 27, November 2017 39 

 
 

Figure 10 A partial sequence diagram for the enroll student use 

case where only the objects from the view layer and the domain 

layer are shown. Messages are received at the StudentForm and 

passed across the internal objects. 

 

The System object from the SMS is expanded by adding three additional 

lifelines and labels (rectangles) representing each layer of objects. More objects 

can be added when a use case indicates interaction between many objects. The 

message syntax remains the same except the introduction of reference 

variables. Figure 10 is called a partial SD because the objects from the DAL is 

not indicated on the diagram. The variable aS is a reference variable for the 

student object while the activation for each object in the system is indicated 

using the tall thin rectangles. The controller object is introduced to operate has 

a switch by accepting and directing incoming messages to the appropriate DL 

object. The DCD will now be discussed to show how behaviors of objects are 

realized from the SD. 

 

Design class diagram 

 

Design class diagrams (DCD) are usually developed parallel to the interaction 

diagrams, which are accomplished by updating the domain classes with a 

method signature to the lower compartment of the domain class models. 

Method signatures are devised based on the details realized from the sequence 

diagram. Most classes contain only three types of methods (constructor, data-

get, data-set, and use case-specific). 

 

The constructor method is a special type of method which is called to create an 

object (Satzinger et al. 2012). It could also accept arguments and set required 

member variables for the new object. Data-get and data-set methods are public 

methods, which allow new values to be assigned to private variables and make 

the values accessible. The get method allows access to values of variables 

while set method assigns value to the private variables. The use case-specific 

methods are driven by the use cases and determined by the behavior of objects, 

which are realized from the SD. These methods are displayed as signatures in 

the DCD (Figure 11). 



40 Gunik, Facilitating software development using UML models 

 
Figure 11 The design class diagram for student management 

subsystem where method signatures are identified from the 

interaction diagrams are indicated at the lower compartment. 

 

In light of OOA for software design some of the major components of the 

models such as attributes, behaviors, objects and classes are discussed. This 

approach focuses on capturing the attributes and behavior of objects which will 

facilitate software development by converting ideas into coding (Dennis et al. 

2015, p.19).  

 

Since the structure of a DCD model is known we can now develop a DCD for 

the SMS (Figure 11).  The method signatures for the class Student have been 

identified by identifying which messages will be sent to the Student object as 

incoming messages. In this case, enrolStudent is the incoming message as 

shown in the SD in Figure 10. In addition, method signatures for the classes 

including Classlist, GradeCategory and GradeBook were identified as possible 

incoming messages and indicated at the lower compartment in the DCDs. 

 

After developing DCDs that show relationships among classes, attributes of the 

classes and method signatures, the model provides an excellent documentation 

and can serve as a blueprint for beginning the programming of the system.   

 

Conclusion 

 

This paper has attempted to provide computing science students with skills in 

the analysis and design of software systems using the UML models. It has 

provided information on how investigation is conducted in the problem 

domain, and models were developed using each of the diagrams. For each 

model, applications were demonstrated and related to the processes of analysis 

and design of the SMS. Demonstrations for use cases, domain classes, activity 

diagrams, system sequence diagrams, sequence diagrams and design class 



Contemporary PNG Studies: DWU Research Journal Vol. 27, November 2017 41 

diagrams were accomplished using a theoretical example of the SMS which has 

identified the process of converting a software idea into coding. 

 

References  

Constructor (object-oriented programming). (n.d.). In Wikipedia. Retrieved 

August 22, 2017, from https://en.wikipedia.org/wiki/Constructor_(object-

oriented_programming)  

Dennis, A., Wixom, B. & Tegarden, D. (2015). Systems analysis and design: 

An object-oriented approach with UML (5th ed.). USA: John Wiley & 

Sons.  

Lemay, L., Perkins, C. & Morrison, M. (1996). Object-Oriented Programming 

and Java. Accessed from 

http://www.dmc.fmph.uniba.sk/public_html/doc/Java/ch2.htm#Objectsan

dClasses  

Satzinger, J., Jackson, R., & Burd, S. (2012). Systems analysis and design in a 

changing world (6th ed.). Boston: Cengage Learning. 

 

Acknowledgements 

I would like to acknowledge Prof. Peter K. Anderson, Head of Departments for 

Information Systems and Mathematics and Computing Science for his 

leadership, encouragement and initial editing of this paper. I also acknowledge 

Mr Martin Daniel, lecturer from the same departments for his ideas, editing and 

reviewing of the paper. However, responsibility for any errors of fact or 

opinion, or infelicities of expression must remain with the author. 

 

Author 

Rodney Gunik is a tutor in the Department of Mathematics and Computing 

Science at Divine Word University where he holds a Bachelor Degree in 

Mathematics and Computing Science and specializes in Applied Mathematical 

Analysis and CCNA. His research interests include researching in software 

development, mathematics & computing science. 

Email rgunik@dwu.ac.pg  

https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
http://www.dmc.fmph.uniba.sk/public_html/doc/Java/ch2.htm#ObjectsandClasses
http://www.dmc.fmph.uniba.sk/public_html/doc/Java/ch2.htm#ObjectsandClasses
mailto:rgunik@dwu.ac.pg

